Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup Northeast Regional Office 205B Lowell Street Wilmington, MA 01887 January 23, 2012 ECS Project No. 05-216613

RE: Release Abatement Measure Status Report

Former Bay State Smelting Company, Inc.

15A Bleachery Court Somerville, MA RTN 3-11753

To Whom It May Concern:

A Release Abatement Measure (RAM) Status Report has been prepared by Environmental Compliance Services, Inc. (ECS), on behalf of the City of Somerville for the above-referenced location herein referred to as the Site. This RAM Status Report has been prepared in accordance with the requirements of 310 CMR 40.0466, the Massachusetts Contingency Plan (MCP). The RAM Plan was submitted on September 23, 2011 in order to manage soils during construction activities on a Massachusetts Department of Environmental Protection (MassDEP) listed disposal site with a Class A-3 Response Action Outcome (RAO) and Activity and Use Limitation (AUL). RAM activities conducted during this period include monitoring during soil excavation activities, soil excavation and disposal.

1.0 RELEASE OF OHM, SITE CONDITIONS AND SURROUNDING RECEPTORS

1.1 <u>Site Description</u>

The Site is located at 15A Bleachery Court in Somerville, Massachusetts, within the boundaries of Conway Park, and was previously used as an outdoor street hockey rink. Universal Transverse Mercator (UTM) coordinates for the Site are 19 468814 meters North and 325834 meters East. The Site latitude is 42°19'55" North, and the Site longitude is 71°06'53" West. A Site Locus is provided as Figure 1, and a Site Plan is provided as Figure 2.

The Site is surrounded by paved parking to the north, outdoor basketball courts to the east, beyond which is Somerville Avenue, an MDC ice hockey rink facility to the south, and a paved driveway and landscaping to the west, beyond which is a rail line. The Site is in the location of a former outdoor skating rink which was removed during RAM activities and is being replaced with an indoor ice skating rink building. This use is consistent with the existing AUL. A location of the skating rink building is indicated on Figure 2.

1.2 <u>Surrounding Receptors</u>

According to the Massachusetts GIS MCP 21E Site Scoring Map for the Site, the Site is a Protected Open Space. The Site is not located in a Zone II Area, Interim Wellhead Protection Area, Zone A Area, or a medium or high yield potentially productive aquifer (PPA). The Site is not mapped within the boundaries of a Current or Potential Drinking Water Source Area or U.S. Environmental Protection Agency (EPA) Sole Source Aquifer. The Site is located more than 500 feet (ft) from areas designated as Areas of Critical Environmental Concern, Protected Open Space, Species of Special Concern and Threatened or Endangered Species Habitats. The Site is also located more than 500 ft from areas designated as Certified Vernal Pools, Outstanding Resource Waters and Wetlands Habitat.

1.3 Release of Oil and Hazardous Materials (OHM)

The former Bay State Smelting Company, Inc. was located at 15A Bleachery Court. A release of No. 2 fuel oil was noted in 1994 during the removal of a 1,000-gallon underground storage tank (UST) and RTN 3-11753 was assigned. The UST was located beneath a concrete floor near the northwest corner of the former Bay State Smelting building. The location of the USTs is shown on Figure 2.

Soils were excavated in 1994 under an immediate response action (IRA) approved for the excavation and disposal of up to 100 cubic yards of soil. Soils at the bottom of the UST excavation exhibited petroleum odors and visual evidence of staining. Additional soils could not be removed due to the presence of a building foundation.

Subsequent environmental investigations were conducted at the Site. Metals were detected in soils, resulting in the issuance of a Notice of Responsibility, but no RTN was assigned. During demolition activities conducted in 1997, a 1,200 gallon UST was punctured and approximately 275-gallons of "kerosene like" product were released. Cleanup activities were conducted, but oil was found in a perched water table triggering an IRA and the issuance of RTN 3-14924. Subsequent assessment indicated that groundwater had not been impacted and a RAO was submitted in March 1998.

In October 1997 during site monitoring activities, light non-aqueous phase liquid (LNAPL) was measured at thickness of two feet in Well 4 (located in the upgradient southwest corner of the property). RTN 3-15632 was issued. An assessment only IRA was conducted, including the installation of additional monitoring wells. LNAPL was measured in newly installed Well A (located north of the former building footprint) in June 1998, and RTN 3-16884 was assigned. LNAPL was identified as a "fresh No. 2 fuel oil". LNAPL was also detected in well 4 (located in the southwest corner of the former foundry building, in the area of former USTs).

A product monitoring/recovery system was installed under the Remedial Implementation Plan, and was subsequently decommissioned as LNAPL was no longer measured in the wells at the Site. A Downgradient Property Status Opinion and IRA Completion Report was submitted in June 1999 for the two RTNs. Groundwater was inferred to flow in an easterly direction.

RAM Activities, EPH and Metal Contaminated Soil

Extractable Petroleum Hydrocarbon (EPH), volatile organic compounds (VOCs), and metals, including lead, arsenic, cadmium, chromium, were detected in soil samples collected from

- beneath and just beyond the former Bay State Smelting Building footprint. A RAM was implemented and excavation activities were conducted from December 1997 through April 1998, as summarized below.
- Based on ECS' review of the RAM Completion Report and a Phase I Initial Site Investigation Report completed in 1995, RAM activities were conducted beneath the former Bay State Smelting building in the areas of the former Ball Mill/Baghouse Area (and former USTs), Former Crushing Shedding Area, Former Incinerator Area and Truck Shed. The exact locations, depths and areal extent of excavations was not provided in the RAMC report.
 - Excavation and of-site transport and disposal of approximately 60 cubic yards of soil/material. This soil/material exceeded the DEP landfill reuse/disposal criteria and was transported for offsite treatment and disposal as hazardous waste to Mill Service Inc. in Pennsylvania.
 - On-site treatment (stabilization) and off-site disposal of contaminated soil using asphalt emulsion soil mixture fixation technology. This reportedly included the excavation, treatment and confirmatory testing of approximately 619 cubic yards of soil whose total lead values were less than the DEP landfill reuse/disposal criteria of 2,000 mg/kg. Soils were disposed at the BFI landfill in Fall River, Massachusetts.
 - Off-site disposal of approximately 90 cubic yards (130.5 tons) of soil and debris from the site, of which 64 tons was successfully stabilized on-site, but the lead levels of 2,740 mg/kg exceeded the DEP landfill reuse/disposal criteria of 2,000 mg/kg. 96.9 tons was transported to Mill Service, Inc. in Pennsylvania and the remaining 33.5 tons was transported to Aggregate Recycling in Eliot, Maine.

Class A-3 RAO and AUL, Comprehensive Environmental, September 2000

The remaining RTNs were linked to RTN 3-11753, and a Class A3 RAO was submitted in September 2000. Results of the Method 3 Risk Characterization indicated that a condition of No Significant Risk exists at the Site under current and future activities.

The soil analytical data presented in the RAO was referenced to a grid on their Site Plan as a means of identifying sample locations beneath the former foundry building. Analytical results for soils remaining on-site following the completion of the excavation activities indicated that with the exception of indeno(1,2,3-cd)pyrene in surficial soils at sample location J10, antimony at location A10, arsenic at location G10, lead at locations A4, J4 and J10, C9-C18 aliphatics and C11-C₂₂ aromatics at Well A1, concentrations of petroleum hydrocarbons, PAHs and metals were below the applicable MCP Method 1 S-1/GW-3 standards. This data was provided in the RAM Plan submitted in September 2011. These grid locations are indicated on Figure 1.

According to the RAO, although contaminant concentrations in soils exceed applicable standards, these soils are inaccessible due to the redevelopment of the site with pavement or concrete covering nearly 95% of the parcel. In those areas not covered with asphalt or concrete, a minimum of three feet of clean cover material was placed. An Activity and Use Limitation (AUL) was implemented to ensure a level of no significant risk under future conditions. The restricted areas, as defined in the AUL, are a) the subsurface soils below the pavement which covers approximately 95% of the site and b) the subsurface soils deeper than three feet in the tree pits and small landscaped areas in various locations which collectively comprise the remaining 5% of the Site.

According to the Phase IV Implementation of the Selected Remedial Action Alternative and Response Action Outcome Statement Report (September 2000), "at a minimum, the site was filled and covered with approximately 4,000 cubic yards of imported clean fill with one foot of sub base gravel bedding. In accordance with DEP guidelines, the landscaped areas were constructed with a total of three feet of clean cover and loam material". Since the filing of the RAO the Site has been utilized as a street hockey court and parking area, with minor landscaped areas. The site is now a construction area, surrounded by a chain link fence while the building is being constructed

2.0 DESCRIPTION OF RAM ACTIVITIES

A RAM Plan was submitted by ECS to MassDEP on September 23, 2011 by the City for the purpose of managing petroleum and heavy metal contaminated soil impacted soil during scheduled site activities.

2.1 Soil Excavation and Assessment

Soil excavation activities commenced on September 28, 2011 and continued through the week of January 16, 2012. As of January 18, 2012, the following activities had been completed: the building footings excavated and poured, the building slab area was prepared (unsuitable materials removed to a depth of 24 inches and replaced with dense grade and/or stone), and underground water, gas and electric lines installation. Footings were excavated to maximum depths of eight feet (ft) below ground surface (bgs) and gas and electric utilities to a maximum depth of three ft bgs and water to depths of six to seven ft bgs.

ECS personnel were on site during the footing excavation activities to observe site soil conditions and screen site soils. ECS personnel collected soil samples from each sidewall of the building footing excavations at 3-4 and 8 ft bgs depth intervals and screened them onsite using a photoinization detector (PID). Sample locations are shown on Figure 2 and PID readings are summarized in Table 1.

PID readings in samples collected from three and four ft bgs ranged from 0 in several samples to 7.5 parts per million (ppm) at sample SW-E-1(4'). PID readings in samples collected from six and eight ft bgs ranged from 0 at several locations to 11.2 at SW2-W-1(8'). In general, PID readings exceeding 5 ppm were detected in the soil samples collected from the footings advanced in the western portion of the proposed building (F-S-6(8'), SW-W and SW-E and SW2-W and SW2-E.

Select soil samples (F-3-S(8'), F-S-5(8'), F-N-6(8') and F-N-11(8')) were submitted for laboratory analysis of VOCs by EPA Method 8260. Samples were selected to provide coverage over the entire building footprint. Sample F-S-6(8') was also analyzed for EPH, as a petroleum odor was noted in this sample and the one collected at a depth of 4 feet at this location (F-S-6(4')) during excavation. Petroleum odors and/or staining were not observed at any other sample location.

No VOCs were detected above laboratory reporting detection limits (RDLs) in soil samples F-3-S(8') and F-S-5(8'). Five petroleum-related VOCs (n-butylbenzene, sec-butylbenzene, tert-butylbenzene, isopropylbenzene and n-propylbenzene) were detected in soil samples F-N-6(8') and F-N-11(8') at concentrations above RDLs. There are no Method 1 Soil Standards for these compounds. The detected concentrations of tert-butylbenzene and n-propylbenzene are below their respective MCP Reportable Concentrations. The compounds sec-butylbenzene, tert-butylbenzene, isopropylbenzene and n-propylbenzene were previously detected in samples S-11 and A1, as reported in the 2000 RAO.

🖏 Printed on recycled, carbon neutral pap

C₉-C₁₈ aliphatic and C₁₁-C₂₂ aromatic hydrocarbons were detected in sample F-N-6(8') at concentrations of 4,380 mg/kg and 1,330 mg/kg, respectively. These concentrations exceed their applicable MCP Method 1 S-1/GW-2 Soil Standards. However, the concentrations are similar to those detected in soil samples collected from the groundwater interface at Well 4 and Well A1 in 1997 and 1998, respectively. These wells were located in the former UST area. In a memorandum dated June 2, 2000, to the MassDEP from Comprehensive Environmental Inc., for RTN 3-15632 and 3-16884, the presence of LNAPL at the site at that time was attributed to offsite sources that may have migrated along the sewer line and other utilities from Garden Court.

EST Associates, consultant to DeIulis Brothers Construction Co. Inc., the General Contractor, collected three insitu soil samples from test pits (TP-1, TP-2 and TP-3) advanced to a depth of 3 ft bgs in the eastern portion of the building area for pre-characterization for soil disposal. These samples were also analyzed for VOCs. No VOCs were detected above laboratory RDLs in soil samples collected from TP-2 and TP-3. Naphthalene and 4-methyl-2-pentanone were the only VOCs detected above RDLs in the soil sample collected from TP-1. The concentration of naphthalene was 0.499 mg/kg, which is below the MCP Method 1 S-1/GW-2 standard. There is no applicable standard for 4-methyl-2-pentanone. Analytical reports are attached.

In the RAM Plan, ECS utilized Figure 1-1 of the MassDEP Vapor Intrusion Guidance to determine whether additional evaluation of the vapor intrusion pathway is warranted. It was concluded that based on historical data that the vapor intrusion pathway was assumed pose deminimus risk based on available data in the September 2000 RAO. ECS will continue to evaluate this pathway. The results of PID readings and laboratory analytical data, as well as site observations during excavation activities, support this conclusion.

2.2 <u>Dewatering Activities</u>

Groundwater was not encountered during excavation activities. Therefore, dewatering was not conducted.

3.0 REMEDIATION WASTE MANAGEMENT

Excavated soil unsuitable per a geotechnical basis for reuse on the site was transported by Konan Trucking, Inc. to News of Worcester/Green Street Lined Landfill in Worcester, Massachusetts for use as landfill shaping and grading material. Following characterization for the permit facility requirements, 748.38 tons was transported via a total of 29 loads on October 27, 28, and 31 and November 1 and 2, 2011 under a Bill of Lading (BOL). Approximately 812.69 tons was transported via a total of 32 loads on November 21, 22, 23 and 25, 2011 under a separate BOL. Approximately 863.9 tons was transported via a total of 34 loads on December 7, 8, 9, and 12, 2011 under a third BOL. Note that the tonnage estimated on the BOLs was exceeded for soils transported under the second and third BOLs due to excess moisture content caused by rains. The soil stockpiles were characterized for this tonnage and the facility accepted the soil. Completed BOLs were submitted via eDEP (eDEP transmittal numbers 444187, 444197 and 444207) on January 13, 2012.

4.0 RAM MODIFICATION

ECS estimated a total of 1,300 cubic yards (approx. 1,950 tons) would be generated during the construction activities at the Site and at the time provided certification that it had the financial resources to manage the excavated materials in the manner and timeframes specified in 310 CMR 40.0030. During this construction process, approximately 2,425 tons of soil has been generated in areas of the footings and utilities were transported to News of Worcester/Green Street Lined Landfill for landfill shaping and grading. Additional excavation activities are planned, and as such, ECS requests to modify the soil volume to 4,000 tons.

5.0 FUTURE RAM ACTIVITIES/PROJECT SCHEDULE

The project schedule is as follows;

- Excavation for and installation of the sewer lines are planned for February 2012.
- The building slab will poured in the spring.
- Submittal of a RAM Completion Report prior to July 2012.

If there are any questions regarding this RAM Status Report, please do not hesitate to contact the undersigned at (781) 246-8897.

Sincerely,

ENVIRONMENTAL COMPLIANCE SERVICES, INC.

Kathleen Baxter, PG

Project Manager

Craig R. Ellis

Licensed Site Professional

in the

FIGURES:

Figure 1 – Site Plan

Figure 2 – Site Plan with RAM Soil Sampling Locations

TABLES:

Table 1 - Concentrations of PID Field Screening

Table 2 - Concentrations of VOCs in Soil Samples

Table 3 - Concentrations of EPH in Soil Samples

ATTACHMENTS:

Attachment I Laboratory Certificates

Project #: 05-216613 City of Somerville Conway Park Blearchery Court Somerville, MA

Table 1 Summary of Photoionization Detector (PID) Field Screening (ppmv)

Date	Sample ID	PID Reading	Date	Sample ID	PID Reading	Date	Sample ID	PID Reading
9/28/11	S-1(6')	2.1	10/6/2011	S-6(8')	3.3	10/21/2011	F-W-9(4')	1.3
	F-1-S(3')	1.0		F-N-6(4')	1.2		F-W-9(8')	2.2
	F-1-S(6')	2.1		F-N-6(8')	3.6		F-S-9(4')	1.8
	F-1-N(3')	1.4		F-S-6(4')	2.7		F-S-9(8')	1.3
	F-1-N(6')	2.1		F-S-6(8')	9.8			
	S-2(6')	2.1				11/1/2011	F-S-9(4')	0.3
	F-2-S(3')	1.0	10/11/2011	F-S-7(4')	2.7		F-S-9(8')	0.3
	F-2-S(6')	1.0		F-S-7(8')	4.3		F-S-10(4')	0.7
	F-2-N(3')	0.7		F-W-7(8')	0.9		F-S-10(8')	1.3
	F-2-N(6')	0.0		F-E-7(4')	0.9			
	S-3(7')	0.0		F-E-7(8')	1.3	11/3/2011	F-N-11(4')	0.7
	S-3(8')	0.0					F-N-11(8')	6.2
	F-3-S(4')	0.0	10/12/2011	F-W-8(4')	2.3		F-S-11(4')	2.7
	F-3-S(8')	0.0		F-W-8(8')	5.0		F-S-11(8')	1.5
	F-3-N(4')	0.3						
	F-3-N(8')	0.3	10/17/2011	SW-W-1(4')	7.0	11/7/2011	F-N-12(4')	1.1
				SW-W-1(8')	9.8		F-N-12(8')	1.1
10/3/11	S-4(8')	3.4		SW-E-1(4')	7.5		F-S-12(4')	0.7
	F-4-S(4')	2.1		SW-E-1(8')	10.3		F-S-12(8')	0.7
	F-4-S(8')	0.3						
	F-4-N(4')	3.0	10/18/2011	SW2-W-1(4')	8.4	11/10/2011	F-N-14(4')	0.3
	F-4-N(8')	2.4		SW2-W-1(8')	11.2		F-N-14(8')	0.6
				SW2-E-1(4')	6.0		F-S-14(4')	0.0
10/5/11	S-5(8')	0.3		SW2-E-1(8')	7.0		F-S-14(8')	0.3
	F-S-5(4')	3.3						
	F-S-5(8')	3.7	10/19/2011		1.8	11/16/2011	S-15(4')	0.0
	F-N-5(4')	2.4		SW-W2(8')	5.6		S-15(8')	0.0
	F-N-5(8')	3.7		SW-E-2(4')	1.8			
				SW-E-2(8')	3.2	11/18/2011	S-W-1(4')	0.0
							S-W-1(8')	0.3
							S-E-1(4')	0.9
							S-E-1(8')	0.6

Project #: 05-216613 City of Somerville Conway Park Bleachery Court Somerville, MA

Table 2 Concentrations of Volatile Organic Compounds (VOCs) Detected in Soil Samples (USEPA Method 8260)

,						(0,000							
Sample Location	F-3-S(8')	F-S-5 (8')	F-S-6 (8')	F-N-11 (8')	TP-1	TP-2	TP-3			MCP Method 1	Soil Standards		
Sampling Date	9/28/11	10/5/11	10/6/11	11/3/2011	12/15/2011	12/15/2011	12/15/2011		T			T	T
Sample Depth Volatile Organic Compounds (ug/kg)	8' Results/Method Det	8'	8'	8'	3'	3'	3'	S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	S-3/GW-2	S-3/GW-3
Acetone	ND/786	ND/56 1	ND/3360	ND/6380	ND/142	ND/137	ND/137	50,000	400.000	50,000	400.000	50,000	400.000
Acrylonitrile	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	NS	NS	NS	NS	NS	NS
Benzene	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	30,000	30,000	200,000	200,000	700,000	900,000
Bromobenzene	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	NS	NS	NS	NS	NS	NS
Bromochloromethane	ND/78.6	ND/5.6	ND/336	ND/638	ND/142	ND/137	ND/137	NS 100.0	NS 20,000	NS 100	NS 100,000	NS 100	NS 500,000
Bromodichloromethane Bromoform	ND/78.6 ND/78.6	ND/5.6 ND/5.6	ND/336 ND/336	ND/638 ND/638	ND/56.8 ND/56.8	ND/54.9 ND/54.9	ND/54.9 ND/54.9	1,000	20,000	1,000	800,000	1,000	800,000
Bromomethane	ND/157	ND/3.0 ND/11.2	ND/672	ND/1280	ND/56.8	ND/54.9	ND/54.9	500	30,000	500	30,000	500	30,000
2-Butanone (MEK)	ND/786	ND/56.1	ND/3360	ND/6380	ND/142	ND/137	ND/137	50,000	400,000	50,000	400,000	50,000	400,000
n-Butylbenzene	ND/78.6	ND/5.6	7,380	10,200	ND/56.8	ND/54.9	ND/54.9	NS	NS	NS	NS	NS	NS
sec-Butylbenzene	ND/78.6	ND/5.6	7,020	7,410	ND/56.8	ND/54.9	ND/54.9	NS	NS	NS	NS	NS	NS
tert-Butylbenzene Carbon disulfide	ND/78.6 ND/157	ND/5.6 ND/11.2	477 ND/672	ND/638 ND/1280	ND/56.8 ND/56.8	ND/54.9 ND/54.9	ND/54.9 ND/54.9	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Carbon tetrachloride	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	5,000	10,000	5,000	60,000	5,000	400,000
Chlorobenzene	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	3,000	100,000	3,000	100,000	3,000	100,000
Chloroethane	ND/157	ND/11.2	ND/672	ND/1280	ND/56.8	ND/54.9	ND/54.9	NS	NS	NS	NS	NS	NS
Chloroform	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	300	400,000	300	800,000	300	800,000
Chloromethane	ND/157	ND/11.2	ND/672	ND/1280	ND/56.8	ND/54.9	ND/54.9	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
2-Chlorotoluene 4-Chlorotoluene	ND/78.6 ND/78.6	ND/5.6 ND/5.6	ND/336 ND/336	ND/638 ND/638	ND/142 ND/142	ND/137 ND/137	ND/137 ND/137	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-Dibromo-3-chloropropane (DBCP)	ND/157	ND/3.0 ND/11.2	ND/672	ND/1280	ND/56.8	ND/54.9	ND/54.9	NS NS	NS	NS NS	NS NS	NS NS	NS NS
Dibromochloromethane	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	NS	NS	NS	NS	NS	NS
1,2-Dibromoethane (EDB)	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	100	700	100	4,000	100	30,000
Dibromomethane	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	NS 30,000	NS 300,000	NS 30,000	NS 300,000	NS 30,000	NS 300,000
1,2-Dichlorobenzene	ND/78.6 ND/78.6	ND/5.6 ND/5.6	ND/336 ND/336	ND/638 ND/638	ND/56.8 ND/56.8	ND/54.9 ND/54.9	ND/54.9 ND/54.9	30,000 40,000	100,000	30,000 40,000	500,000	30,000 40,000	500,000
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND/78.6 ND/78.6	ND/5.6 ND/5.6	ND/336 ND/336	ND/638 ND/638	ND/56.8 ND/56.8	ND/54.9 ND/54.9	ND/54.9 ND/54.9	4,000	50,000	4,000	300,000	4,000	2,000,000
Dichlorodifluoromethane	ND/157	ND/11.2	ND/672	ND/1280	ND/56.8	ND/54.9	ND/54.9	NS	NS	NS	NS	NS NS	NS
1,1-Dichloroethane	ND/78.6	ND/5.6	ND/336	ND/638	ND/142	ND/137	ND/137	5,000	500,000	5,000	1,000,000	5,000	1,000,000
1,2-Dichloroethane	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	100	10,000	100	90,000	100	300,000
1,1-Dichloroethene	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	40,000	500,000	40,000	1,000,000	40,000	3,000,000
cis-1,2-dichloroethene	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	1.000	100,000	400 1,000	500,000	400	500,000 3.000,000
trans-1,2-dichloroethene 1,2-Dichloropropane	ND/78.6 ND/78.6	ND/5.6 ND/5.6	ND/336 ND/336	ND/638 ND/638	ND/56.8 ND/56.8	ND/54.9 ND/54.9	ND/54.9 ND/54.9	1,000	500,000 10,000	1,000	1,000,000	1,000	600,000
1,3-Dichloropropane	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	NS	NS	NS	NS	NS	NS
2,2-Dichloropropane	ND/78.6	ND/5.6	ND/336	ND/638	ND/142	ND/137	ND/137	NS	NS	NS	NS	NS	NS
1,1-Dichloropropane	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	NS	NS	NS	NS	NS	NS
cis-1,3-Dichloropropene	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	400	9,000	400	70,000	400	100,000
trans-1,3-Dichloropropene Ethylbenzene	ND/78.6 ND/78.6	ND/5.6 ND/5.6	ND/336 ND/336	ND/638 ND/638	ND/56.8 ND/56.8	ND/54.9 ND/54.9	ND/54.9 ND/54.9	500,000	500,000	1,000,000	100,000	1.000.000	3,000,000
Hexachlorobutadiene	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	6,000	6,000	90,000	90,000	100,000	100,000
2-Hexanone (MBK)	ND/786	ND/56.1	ND/3360	ND/6380	ND/142	ND/137	ND/137	NS	NS	NS	NS	NS	NS
Isopropylbenzene	ND/78.6	ND/5.6	2,110	1,720	ND/56.8	ND/54.9	ND/54.9	NS	NS	NS	NS	NS	NS
4-Isopropyltoluene	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	NS	NS	NS	NS	NS	NS
Methyl-tert-butyl-ether (MTBE)	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	100,000 50,000	100,000	100,000 50,000	500,000 400,000	100,000 50,000	500,000
4-Methyl-2-pentanone (MIBK) Methylene chloride	ND/786 ND/157	ND/56.1 ND/11.2	ND/3360 ND/672	ND/6380 ND/1280	57.4 ND/56.8	ND/54.9 ND/54.9	ND/54.9 ND/54.9	50,000 NS	400,000 NS	50,000 NS	400,000 NS	50,000 NS	400,000 NS
Naphthalene	ND/78.6	ND/5.6	ND/336	ND/638	499	ND/137	ND/137	40,000	500,000	40,000	1,000,000	40,000	3,000,000
n-Propylbenzene	ND/78.6	ND/5.6	4,950	5,220	ND/56.8	ND/54.9	ND/54.9	NS	NS	NS	NS	NS	NS
Styrene	ND/78.6	ND/5.6	ND/336	ND/638	ND/142	ND/137	ND/137	4,000	30,000	4,000	200,000	4,000	1,000,000
1,1,1,2-Tetrachloroethane	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	100	7,000	100	100,000	100	300,000
1,1,2,2-Tetrachloroethane	ND/78.6 ND/78.6	ND/5.6 ND/5.6	ND/336 ND/336	ND/638 ND/638	ND/56.8 ND/56.8	ND/54.9 ND/54.9	ND/54.9 ND/54.9	20 10,000	800 30,000	20 10,000	10,000	20 10,000	40,000 1,000,000
Tetrachloroethene (PCE) Toluene	ND/78.6 ND/78.6	ND/5.6 ND/5.6	ND/336 ND/336	ND/638 ND/638	ND/56.8 ND/56.8	ND/54.9 ND/54.9	ND/54.9 ND/54.9	500,000	500,000	1,000,000	1,000,000	2.000.000	3,000,000
1,2,3-Trichlorobenzene	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	NS	NS	NS	NS	NS	NS
1,2,4-Trichlorobenzene	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	70,000	500,000	70,000	900,000	70,000	900,000
1,1,1-Trichloroethane	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	500,000	500,000	600,000	1,000,000	600,000	3,000,000
1,1,2-Trichloroethane	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	2,000	4,000	2,000	60,000	2,000	200,000
Trichloroethene (TCE) Trichlorofluoromethane	ND/78.6 ND/78.6	ND/5.6 ND/5.6	ND/336 ND/336	ND/638 ND/638	ND/56.8 ND/142	ND/54.9 ND/137	ND/54.9 ND/137	2,000 NS	90,000 NS	2,000 NS	700,000 NS	2,000 NS	2,000,000 NS
1,2,3-Trichloropropane	ND/78.6	ND/5.6	ND/336	ND/638	NA NA	NA NA	NA NA	NS	NS	NS	NS	NS	NS
1,2,4-Trimethylbenzene	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	NS	NS	NS	NS	NS	NS
1,3,5-Trimethylbenzene	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	NS	NS	NS	NS	NS	NS
Vinyl chloride	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	600.0	600.0	700	4,000	700	30,000
m.p- Xylenes o-Xylene	ND/157 ND/78.6	ND/11.2 ND/5.6	ND/672 ND/336	ND/1280 ND/638	ND/142	ND/137	ND/137	300,000	500,000	300,000	1,000,000	300,000	3,000,000
1,1,2-Trichlorotrifluoroethane (Freon 113)	ND/78.6	ND/5.6 ND/5.6	ND/336	ND/638	NA	NA	NA	NS	NS	NS	NS	NS	NS
Tetrahydrofuran	ND/157	ND/11.2	ND/672	ND/638	ND/142	ND/137	ND/137	NS	NS	NS	NS	NS	NS
Ethyl ether	ND/78.6	ND/5.6	ND/336	ND/638	NA NA	NA NA	NA	NS	NS	NS	NS	NS	NS
Tert-amyl methyl ether	ND/78.6	ND/5.6	ND/336	ND/638	NA	NA	NA	NS	NS	NS	NS	NS	NS
Ethyl tert-butyl ether	ND/78.6	ND/5.6	ND/336	ND/638	ND/56.8	ND/54.9	ND/54.9	NS	NS	NS	NS	NS	NS
Di-isopropyl ether Tert-Butanol / butyl alcohol	ND/78.6 ND/786	ND/5.6 ND/56.1	ND/336 ND/3360	ND/638 ND/6380	ND/56.8 NA	ND/54.9 NA	ND/54.9 NA	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,4-Dioxane	ND/1570	ND/36.1 ND/112	ND/6720	ND/0380 ND/12800	NA NA	NA NA	NA NA	6,000	70,000	6,000	500,000	6,000	500,000
trans-1,-Dichloro-2-butene	ND/393	ND/28.0	ND/1680	ND/3190	NA NA	NA NA	NA NA	NS	NS	NS	NS	NS	NS
													-

trans-1-Dichloro-2-butene ND/393 ND/28.0 ND/1680 ND/315
NOTES:

NA = target analyte Not Analyzed.
ND/5.0 = target analyte Not Detected above the noted detection limit.
NS = No Standard.

Bold indicates target analyte exceeds the MCP Method 1 Risk Based Standards.

Reportable Concentrations are excerpted from 310 CMR 40.1600 Table 1.

MCP Method 1 Risk Standards are excerpted from 310 CMR 40.0975(6)(a) Table 2 and 310 CMR 40.0975(6)(b) Table 3.

Project #: 05-216613		a	Tab				
City of Somerville		Concentrati	ions of Extractab	•	drocarbons		
Conway Park			Detected in S	Soil Samples			
Bleachery Court							
Somerville, MA							
Sample Location	F-S-6 (8')						
Date	9/28/11						
Depth	8'	S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	S-3/GW-2	S-3/GW-3
EPH Fractions (mg/kg)	Results/Method Detection Limi	its					
C ₉ -C ₁₈ Aliphatics	4,380	1,000	1,000	3,000	3,000	5,000	5,000
C ₁₉ -C ₃₆ Aliphatics	585	3,000	3,000	5,000	5,000	5,000	5,000
C ₁₁ -C ₂₂ Aromatics	1,330	1,000	1,000	3,000	3,000	5,000	5,000
EPH Target Analytes (ug/kg)							
Acenaphthene	2.85	1,000,000	1,000,000	3,000,000	3,000,000	5,000,000	5,000,000
Acenaphthylene	ND/0.380	600,000	10,000	600,000	10,000	600,000	10,000
Anthracene	0.967	1,000,000	1,000,000	3,000,000	3,000,000	5,000,000	5,000,000
Benzo (a) anthracene	ND/0.380	7,000	7,000	40,000	40,000	300,000	300,000
Benzo (b) fluoranthene	ND/0.380	7,000	7,000	40,000	40,000	300,000	300,000
Benzo (k) fluoranthene	ND/0.380	70,000	70,000	400,000	400,000	3,000,000	3,000,000
Benzo (a) pyrene	ND/0.380	2,000	2,000	4,000	4,000	30,000	30,000
Benzo (g,h,i) perylene	ND/0.380	1,000,000	1,000,000	3,000,000	3,000,000	5,000,000	5,000,000
Chrysene	ND/0.380	70,000	70,000	400,000	400,000	3,000,000	3,000,000
Dibenzo (a,h) anthracene	ND/0.380	700	700	4,000	4,000	30,000	30,000
Fluoranthene	0.864	1,000,000	1,000,000	3,000,000	3,000,000	5,000,000	5,000,000
Fluorene	3.48	1,000,000	1,000,000	3,000,000	3,000,000	5,000,000	5,000,000
Indeno (1,2,3-cd) pyrene	ND.0.380	7,000	7,000	40,000	40,000	300,000	300,000
2-Methylnaphthalene	13.3	80,000	300,000	80,000	500,000	80,000	500,000
Naphthalene	ND/0.380	40,000	500,000	40,000	1,000,000	40,000	3,000,000
Phenanthrene	7.25	500,000	500,000	1,000,000	1,000,000	3,000,000	3,000,000
Pyrene	0.906	1,000,000	1,000,000	3,000,000	3,000,000	5,000,000	5,000,000

NOTES:

NA = target analyte Not Analyzed.

ND/5.0 = target analyte Not Detected above the noted detection limit.

NS = No Standard.

Bold indicates target analyte exceeds the MCP Method 1 Risk Based Standards.

Reportable Concentrations are excerpted from 310 CMR 40.1600 Table 1.

MCP Method 1 Risk Standards are excerpted from 310 CMR 40.0975(6)(a) Table 2 and 310 CMR 40.0975(6)(b) Table 3.

Report Date: 14-Oct-11 12:19

□ Re-Issued Report □ Revised Report

Laboratory Report

Environmental Compliance Services 10 State Street Woburn, MA 01801 Attn: Kathy Baxter

Project: Conway Park - Somerville, MA

Project #: 05-216613

Laboratory ID Client Sample ID Matrix Date Sampled Date Received SB36871-01 F-3-S (8') Soil 28-Sep-11 14:30 04-Oct-11 17:28

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Vicole Leja

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please note that this report contains 12 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

CASE NARRATIVE:

The sample temperature upon receipt by Spectrum Analytical courier was recorded as 4.1 degrees Celsius. The condition of these samples was further noted as refrigerated. The samples were transported on ice to the laboratory facility and the temperature was recorded at 2.7 degrees Celsius upon receipt at the laboratory. Please refer to the Chain of Custody for details specific to sample receipt times.

An infrared thermometer with a tolerance of +/- 2.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Additional dilution factors may be required to keep analyte concentration within instrument calibration.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8260C

Calibration:

1109007

Analyte quantified by quadratic equation type calibration.

1,2-Dibromo-3-chloropropane

2-Hexanone (MBK)

4-Methyl-2-pentanone (MIBK)

Bromoform

cis-1,3-Dichloropropene

Dibromochloromethane

trans-1,3-Dichloropropene

This affected the following samples:

S108096-ICV1

Laboratory Control Samples:

1121017 BS/BSD

1,2-Dibromo-3-chloropropane percent recoveries (128/132) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

F-3-S (8')

Bromoform percent recoveries (129/135) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

F-3-S (8')

Samples:

S109279-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

1,1,1,2-Tetrachloroethane (20.8%)

1,2,4-Trimethylbenzene (22.1%)

1,3,5-Trimethylbenzene (22.5%)

2,2-Dichloropropane (27.7%)

Carbon tetrachloride (20.7%)

n-Butylbenzene (21.4%)

trans-1,4-Dichloro-2-butene (32.7%)

SW846 8260C

Samples:

S109279-CCV1

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

1,2-Dibromo-3-chloropropane (37.8%) Bromodichloromethane (22.0%) Bromoform (33.3%) Carbon disulfide (30.8%) Dibromochloromethane (21.1%)

This affected the following samples:

1121017-BLK1 1121017-BS1 1121017-BSD1 F-3-S (8')

SB36871-01 F-3-S (8')

Reporting limits reflect SW846 5030 extraction technique due to interference and/or QC issues using SW846 5035A extraction technique.

1

SM2540 G Mod. 11-Oct-11 11-Oct-11

%

General Chemistry Parameters
% Solids

77.6

1120918

DT

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1121017 - SW846 5030 Soil (high level)										
Blank (1121017-BLK1)					Pre	epared & Ar	nalyzed: 12-	Oct-11		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 50.0		μg/kg wet	50.0						
Acetone	< 500		μg/kg wet	500						
Acrylonitrile	< 50.0		μg/kg wet	50.0						
Benzene	< 50.0		μg/kg wet	50.0						
Bromobenzene	< 50.0		μg/kg wet	50.0						
Bromochloromethane	< 50.0		μg/kg wet	50.0						
Bromodichloromethane	< 50.0		μg/kg wet	50.0						
Bromoform	< 50.0		μg/kg wet	50.0						
Bromomethane	< 100		μg/kg wet	100						
2-Butanone (MEK)	< 500		μg/kg wet	500						
n-Butylbenzene	< 50.0		μg/kg wet	50.0						
sec-Butylbenzene	< 50.0		μg/kg wet	50.0						
tert-Butylbenzene	< 50.0		μg/kg wet	50.0						
Carbon disulfide	< 100		μg/kg wet	100						
Carbon tetrachloride	< 50.0		μg/kg wet	50.0						
Chlorobenzene	< 50.0		μg/kg wet	50.0						
Chloroethane	< 100		μg/kg wet	100						
Chloroform	< 50.0		μg/kg wet	50.0						
Chloromethane	< 100		μg/kg wet	100						
2-Chlorotoluene	< 50.0		μg/kg wet	50.0						
4-Chlorotoluene	< 50.0		μg/kg wet	50.0						
1,2-Dibromo-3-chloropropane	< 100		μg/kg wet	100						
Dibromochloromethane	< 50.0		μg/kg wet	50.0						
1,2-Dibromoethane (EDB)	< 50.0		μg/kg wet	50.0						
Dibromomethane	< 50.0		μg/kg wet	50.0						
1,2-Dichlorobenzene	< 50.0		μg/kg wet	50.0						
1,3-Dichlorobenzene	< 50.0		μg/kg wet	50.0						
1,4-Dichlorobenzene	< 50.0		μg/kg wet	50.0						
Dichlorodifluoromethane (Freon12)	< 100		μg/kg wet	100						
1,1-Dichloroethane	< 50.0		μg/kg wet	50.0						
1,2-Dichloroethane	< 50.0		µg/kg wet	50.0						
1,1-Dichloroethene	< 50.0		μg/kg wet	50.0						
cis-1,2-Dichloroethene	< 50.0		μg/kg wet	50.0						
trans-1,2-Dichloroethene	< 50.0		μg/kg wet	50.0						
1,2-Dichloropropane	< 50.0		μg/kg wet	50.0						
1,3-Dichloropropane	< 50.0		μg/kg wet	50.0						
2,2-Dichloropropane	< 50.0		μg/kg wet	50.0						
1,1-Dichloropropene	< 50.0		μg/kg wet	50.0						
cis-1,3-Dichloropropene	< 50.0		μg/kg wet	50.0						
trans-1,3-Dichloropropene	< 50.0		μg/kg wet	50.0						
Ethylbenzene	< 50.0		μg/kg wet	50.0						
Hexachlorobutadiene	< 50.0		μg/kg wet	50.0						
2-Hexanone (MBK)	< 500		μg/kg wet	500						
Isopropylbenzene	< 50.0		μg/kg wet	50.0						
4-Isopropyltoluene	< 50.0		μg/kg wet	50.0						
Methyl tert-butyl ether	< 50.0		µg/kg wet	50.0						
4-Methyl-2-pentanone (MIBK)	< 500		µg/kg wet	500						
Methylene chloride	< 100		µg/kg wet	100						
Naphthalene	< 50.0		µg/kg wet	50.0						
n-Propylbenzene	< 50.0		µg/kg wet	50.0						
Styrene	< 50.0		µg/kg wet	50.0						
1,1,1,2-Tetrachloroethane	< 50.0		µg/kg wet	50.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1121017 - SW846 5030 Soil (high level)										
Blank (1121017-BLK1)					Pre	epared & Ai	nalyzed: 12-	Oct-11		
1,1,2,2-Tetrachloroethane	< 50.0		μg/kg wet	50.0						
Tetrachloroethene	< 50.0		μg/kg wet	50.0						
Toluene	< 50.0		μg/kg wet	50.0						
1,2,3-Trichlorobenzene	< 50.0		μg/kg wet	50.0						
1,2,4-Trichlorobenzene	< 50.0		μg/kg wet	50.0						
1,3,5-Trichlorobenzene	< 50.0		μg/kg wet	50.0						
1,1,1-Trichloroethane	< 50.0		μg/kg wet	50.0						
1,1,2-Trichloroethane	< 50.0		μg/kg wet	50.0						
Trichloroethene	< 50.0		μg/kg wet	50.0						
Trichlorofluoromethane (Freon 11)	< 50.0		μg/kg wet	50.0						
1,2,3-Trichloropropane	< 50.0		μg/kg wet	50.0						
1,2,4-Trimethylbenzene	< 50.0		μg/kg wet	50.0						
1,3,5-Trimethylbenzene	< 50.0		μg/kg wet	50.0						
Vinyl chloride	< 50.0		μg/kg wet	50.0						
m,p-Xylene	< 100		μg/kg wet	100						
o-Xylene	< 50.0		μg/kg wet	50.0						
Tetrahydrofuran	< 100		μg/kg wet	100						
Ethyl ether	< 50.0		μg/kg wet	50.0						
Tert-amyl methyl ether	< 50.0		μg/kg wet	50.0						
Ethyl tert-butyl ether	< 50.0		μg/kg wet	50.0						
Di-isopropyl ether	< 50.0		μg/kg wet	50.0						
Tert-Butanol / butyl alcohol	< 500		μg/kg wet	500						
1,4-Dioxane	< 1000		μg/kg wet	1000						
trans-1,4-Dichloro-2-butene	< 250		μg/kg wet	250						
Ethanol	< 20000		μg/kg wet	20000						
Surrogate: 4-Bromofluorobenzene	26.0		μg/kg wet		30.0		87	70-130		
Surrogate: Toluene-d8	28.8		μg/kg wet		30.0		96	70-130		
Surrogate: 1,2-Dichloroethane-d4	32.8		μg/kg wet		30.0		109	70-130		
Surrogate: Dibromofluoromethane	34.1		μg/kg wet		30.0		114	70-130		
LCS (1121017-BS1)	•		µg/g			enared & Ai	nalyzed: 12-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	19.7		μg/kg wet		20.0	oparca a 71	99	70-130		
Acetone	21.2		μg/kg wet		20.0		106	70-130		
Acrylonitrile	21.7		μg/kg wet		20.0		108	70-130		
Benzene	19.6		μg/kg wet μg/kg wet		20.0		98	70-130		
Bromobenzene	20.1		μg/kg wet μg/kg wet		20.0		100	70-130		
Bromochloromethane	19.3		μg/kg wet μg/kg wet		20.0		97	70-130		
Bromodichloromethane	22.6		μg/kg wet μg/kg wet		20.0		113	70-130		
Bromoform	25.7		μg/kg wet μg/kg wet		20.0		129	70-130		
Bromomethane	20.9		μg/kg wet μg/kg wet		20.0		104	70-130		
2-Butanone (MEK)	20.7		μg/kg wet μg/kg wet		20.0		104	70-130		
n-Butylbenzene	21.7		μg/kg wet μg/kg wet		20.0		108	70-130		
sec-Butylbenzene	22.0		μg/kg wet μg/kg wet		20.0		110	70-130		
tert-Butylbenzene	21.5		μg/kg wet μg/kg wet		20.0		107	70-130		
Carbon disulfide	23.9		μg/kg wet μg/kg wet		20.0		119	70-130		
Carbon tetrachloride	23.9		μg/kg wet		20.0		113	70-130		
Chlorobenzene	19.4		μg/kg wet μg/kg wet		20.0		97	70-130		
Chloroethane	20.8		μg/kg wet μg/kg wet		20.0		104	70-130		
Chloroform	20.6		μg/kg wet μg/kg wet		20.0		104	70-130 70-130		
Chloromethane	20.6				20.0		111	70-130 70-130		
2-Chlorotoluene			µg/kg wet		20.0		112	70-130 70-130		
	22.4		μg/kg wet							
4-Chlorotoluene	21.2		μg/kg wet		20.0		106	70-130		

halyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
tch 1121017 - SW846 5030 Soil (high level)										
LCS (1121017-BS1)					Pre	enared & Ai	nalyzed: 12-	Oct-11		
1,2-Dibromo-3-chloropropane	25.5		μg/kg wet		20.0	sparoa a 7 a	128	70-130		
Dibromochloromethane	23.5		μg/kg wet μg/kg wet		20.0		118	70-130		
1,2-Dibromoethane (EDB)	20.6		μg/kg wet μg/kg wet		20.0		103	70-130		
Dibromomethane	21.4		μg/kg wet μg/kg wet		20.0		107	70-130		
1,2-Dichlorobenzene	20.9		μg/kg wet μg/kg wet		20.0		104	70-130		
1,3-Dichlorobenzene	21.0		μg/kg wet μg/kg wet		20.0		105	70-130		
1,4-Dichlorobenzene	20.0		μg/kg wet μg/kg wet		20.0		100	70-130		
Dichlorodifluoromethane (Freon12)	22.2		μg/kg wet μg/kg wet		20.0		111	70-130		
1,1-Dichloroethane	19.5		μg/kg wet μg/kg wet		20.0		97	70-130		
1,2-Dichloroethane	20.3		μg/kg wet		20.0		102	70-130		
1.1-Dichloroethene	20.3 19.8						99	70-130		
,			μg/kg wet		20.0		99 94	70-130 70-130		
cis-1,2-Dichloroethene	18.8		μg/kg wet		20.0					
trans-1,2-Dichloroethene	19.6		μg/kg wet		20.0		98	70-130		
1,2-Dichloropropane	20.6		μg/kg wet		20.0		103	70-130		
1,3-Dichloropropane	20.5		μg/kg wet		20.0		103	70-130		
2,2-Dichloropropane	24.1		μg/kg wet		20.0		120	70-130		
1,1-Dichloropropene	18.8		μg/kg wet		20.0		94	70-130		
cis-1,3-Dichloropropene	20.6		μg/kg wet		20.0		103	70-130		
trans-1,3-Dichloropropene	22.7		μg/kg wet		20.0		114	70-130		
Ethylbenzene	20.2		μg/kg wet		20.0		101	70-130		
Hexachlorobutadiene	20.5		μg/kg wet		20.0		103	70-130		
2-Hexanone (MBK)	20.6		μg/kg wet		20.0		103	70-130		
Isopropylbenzene	20.4		μg/kg wet		20.0		102	70-130		
4-Isopropyltoluene	21.3		μg/kg wet		20.0		106	70-130		
Methyl tert-butyl ether	19.4		μg/kg wet		20.0		97	70-130		
4-Methyl-2-pentanone (MIBK)	17.6		μg/kg wet		20.0		88	70-130		
Methylene chloride	17.8		μg/kg wet		20.0		89	70-130		
Naphthalene	19.4		μg/kg wet		20.0		97	70-130		
n-Propylbenzene	20.9		μg/kg wet		20.0		104	70-130		
Styrene	18.9		μg/kg wet		20.0		94	70-130		
1,1,1,2-Tetrachloroethane	22.7		μg/kg wet		20.0		113	70-130		
1,1,2,2-Tetrachloroethane	24.3		μg/kg wet		20.0		121	70-130		
Tetrachloroethene	18.0		μg/kg wet		20.0		90	70-130		
Toluene	18.8		μg/kg wet		20.0		94	70-130		
1,2,3-Trichlorobenzene	21.3		μg/kg wet		20.0		106	70-130		
1,2,4-Trichlorobenzene	19.5		μg/kg wet		20.0		97	70-130		
1,3,5-Trichlorobenzene	19.1		μg/kg wet		20.0		95	70-130		
1,1,1-Trichloroethane	22.6		μg/kg wet		20.0		113	70-130		
1,1,2-Trichloroethane	20.7		μg/kg wet		20.0		103	70-130		
Trichloroethene	19.4		μg/kg wet		20.0		97	70-130		
Trichlorofluoromethane (Freon 11)	21.2		μg/kg wet		20.0		106	70-130		
1,2,3-Trichloropropane	21.7		μg/kg wet		20.0		108	70-130		
1,2,4-Trimethylbenzene	22.4		μg/kg wet		20.0		112	70-130		
1,3,5-Trimethylbenzene	22.1		μg/kg wet		20.0		110	70-130		
Vinyl chloride	19.8		μg/kg wet		20.0		99	70-130		
m,p-Xylene	43.2		μg/kg wet		40.0		108	70-130		
o-Xylene	22.2		μg/kg wet		20.0		111	70-130		
Tetrahydrofuran	19.9		μg/kg wet		20.0		99	70-130		
Ethyl ether					20.0		99	70-130 70-130		
•	19.8		μg/kg wet							
Tert-amyl methyl ether	20.1		μg/kg wet		20.0		100	70-130		
Ethyl tert-butyl ether Di-isopropyl ether	19.4 19.7		μg/kg wet μg/kg wet		20.0 20.0		97 98	70-130 70-130		

		Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
				Pre	epared & Ar	nalyzed: 12-	Oct-11		
215		μg/kg wet		200		107	70-130		
179		μg/kg wet		200		90	70-130		
23.9		μg/kg wet		20.0		120	70-130		
459		μg/kg wet		400		115	70-130		
29.6		μg/kg wet		30.0		99	70-130		
28.7		μg/kg wet		30.0		96	70-130		
30.7		μg/kg wet		30.0		102	70-130		
32.0		μg/kg wet		30.0		107	70-130		
				Pre	epared & Ar	nalyzed: 12-	Oct-11		
21.0		μg/kg wet		20.0	•	105	70-130	7	25
22.2		μg/kg wet		20.0		111	70-130	5	50
21.6		μg/kg wet		20.0		108	70-130	0.5	25
21.2		μg/kg wet		20.0		106	70-130	8	25
21.9		μg/kg wet		20.0		110	70-130	9	25
21.0		μg/kg wet		20.0		105	70-130	8	25
24.4		μg/kg wet		20.0		122	70-130	8	25
26.9	QM9	μg/kg wet		20.0		135	70-130	5	25
21.8		μg/kg wet		20.0		109	70-130	4	50
21.2		μg/kg wet		20.0		106	70-130	2	50
23.4		μg/kg wet		20.0		117	70-130	8	25
23.9		μg/kg wet		20.0		120	70-130	8	25
23.8		μg/kg wet		20.0		119	70-130	10	25
25.8		μg/kg wet		20.0		129	70-130	8	25
24.6		μg/kg wet		20.0		123	70-130	8	25
21.5		μg/kg wet		20.0		107	70-130	10	25
22.2		μg/kg wet		20.0		111	70-130	6	50
21.4		μg/kg wet		20.0		107	70-130	4	25
24.8		μg/kg wet		20.0		124	70-130	11	25
23.2		μg/kg wet		20.0		116	70-130	3	25
23.5		μg/kg wet		20.0		118	70-130	11	25
26.4	QM9	μg/kg wet		20.0		132	70-130	4	25
25.1		μg/kg wet		20.0		126	70-130	7	50
21.9		μg/kg wet		20.0		109	70-130	6	25
22.6		μg/kg wet		20.0		113	70-130	5	25
22.5		μg/kg wet		20.0		112	70-130	7	25
22.9		μg/kg wet		20.0		114	70-130	9	25
22.0		μg/kg wet		20.0		110	70-130	10	25
23.5		μg/kg wet		20.0		118	70-130	6	50
20.9		μg/kg wet		20.0		105	70-130	7	25
21.5		μg/kg wet		20.0		108	70-130		25
21.5		μg/kg wet		20.0		108	70-130		25
20.3		μg/kg wet							25
21.2		μg/kg wet		20.0		106	70-130	8	25
22.6		μg/kg wet							25
		μg/kg wet							25
25.8		μg/kg wet		20.0		129	70-130		25
20.7		μg/kg wet		20.0		103	70-130	9	25
22.4		μg/kg wet		20.0		112	70-130	8	25
24.1		μg/kg wet		20.0		120	70-130	6	25
22.6									25 50
	23.9 459 29.6 28.7 30.7 32.0 21.0 22.2 21.6 21.2 21.9 21.0 24.4 26.9 21.8 21.2 23.4 23.9 23.8 25.8 24.6 21.5 22.2 21.4 24.8 23.2 23.5 26.4 25.1 21.9 22.6 22.5 22.9 22.0 23.5 20.9 21.5 20.9 21.5 20.3 21.2 22.6 21.1 25.8 20.7 22.4 24.1	179 23.9 459 29.6 28.7 30.7 32.0 21.0 22.2 21.6 21.2 21.9 21.0 24.4 26.9 21.8 21.2 23.4 23.9 23.8 25.8 24.6 21.5 22.2 21.4 24.8 23.2 23.5 26.4 QM9 25.1 21.9 22.6 22.5 22.9 22.0 23.5 20.9 21.5 21.5 20.3 21.2 22.6 21.1 25.8 20.7 22.4 24.1 22.6	179	179	215 μg/kg wet 200 179 μg/kg wet 200 23.9 μg/kg wet 20.0 459 μg/kg wet 400 29.6 μg/kg wet 30.0 28.7 μg/kg wet 30.0 30.7 μg/kg wet 30.0 32.0 μg/kg wet 30.0 21.0 μg/kg wet 20.0 22.2 μg/kg wet 20.0 21.6 μg/kg wet 20.0 21.9 μg/kg wet 20.0 21.9 μg/kg wet 20.0 21.9 μg/kg wet 20.0 24.4 μg/kg wet 20.0 21.8 μg/kg wet 20.0 21.8 μg/kg wet 20.0 21.2 μg/kg wet 20.0 23.4 μg/kg wet 20.0 23.5 μg/kg wet 20.0 23.8 μg/kg wet 20.0 23.8 μg/kg wet 20.0 24.6 μg/kg wet <td< td=""><td>215 µg/kg wet 200 179 µg/kg wet 200 23.9 µg/kg wet 20.0 459 µg/kg wet 400 29.6 µg/kg wet 30.0 30.7 µg/kg wet 30.0 32.0 µg/kg wet 30.0 21.0 µg/kg wet 20.0 21.1 µg/kg wet 20.0 21.2 µg/kg wet 20.0 21.2 µg/kg wet 20.0 21.1 µg/kg wet 20.0 21.2 µg/kg wet 20.0 21.1 µg/kg wet 20.0 21.2 µg/kg wet 20.0 21.3 µg/kg wet 20.0 21.4 µg/kg wet 20.0 21.5 µg/kg wet 20.0 23.4 µg/kg wet 20.0 23.5 µg/kg wet 20.0 24.6 µg/kg wet 20.0 24.6 µg/kg wet 20.0 25.8 µg/kg wet 20.0 26.9 QM9 µg/kg wet 20.0 27.9 µg/kg wet 20.0 28.8 µg/kg wet 20.0 29.1 µg/kg wet 20.0 29.1 µg/kg wet 20.0 29.2 µg/kg wet 20.0 21.1 µg/kg wet 20.0 21.2 µg/kg wet 20.0 23.3 µg/kg wet 20.0 24.4 µg/kg wet 20.0 25.5 µg/kg wet 20.0 26.6 µg/kg wet 20.0 27.1 µg/kg wet 20.0 28.2 µg/kg wet 20.0 29.3 µg/kg wet 20.0 20.0 µg/kg wet 20.0 21.1 µg/kg wet 20.0 22.2 µg/kg wet 20.0 23.5 µg/kg wet 20.0 23.5 µg/kg wet 20.0 24.6 µg/kg wet 20.0 25.1 µg/kg wet 20.0 26.4 QM9 µg/kg wet 20.0 27.5 µg/kg wet 20.0 28.5 µg/kg wet 20.0 29.5 µg/kg wet 20.0 20.0 µg/kg wet 20.0 21.5 µg/kg wet 20.0 22.6 µg/kg wet 20.0 21.5 µg/kg wet 20.0 22.6 µg/kg wet 20.0 21.5 µg/kg wet 20.0 21.5 µg/kg wet 20.0 22.6 µg/kg wet 20.0 21.1 µg/kg wet 20.0 22.2 µg/kg wet 20.0 22.3 µg/kg wet 20.0 22.4 µg/kg wet 20.0 22.4 µg/kg wet 20.0 22.4 µg/kg wet 20.0 22.4 µg/kg wet 20.0 22.6 µg/kg wet 20.0</td><td>215 μg/kg wet 200 107 179 μg/kg wet 200 90 22.9 μg/kg wet 20.0 120 459 μg/kg wet 20.0 115 29.6 μg/kg wet 30.0 99 30.7 μg/kg wet 30.0 102 32.0 μg/kg wet 30.0 107 Prepared & Analyzed: 12- 21.0 μg/kg wet 20.0 105 22.2 μg/kg wet 20.0 108 21.6 μg/kg wet 20.0 108 21.2 μg/kg wet 20.0 106 21.9 μg/kg wet 20.0 106 21.9 μg/kg wet 20.0 105 24.4 μg/kg wet 20.0 122 26.9 QM9 μg/kg wet 20.0 135 21.8 μg/kg wet 20.0 106 21.2 μg/kg wet 20.0 117 23.4 μg/kg wet <td< td=""><td> 179</td><td> 215</td></td<></td></td<>	215 µg/kg wet 200 179 µg/kg wet 200 23.9 µg/kg wet 20.0 459 µg/kg wet 400 29.6 µg/kg wet 30.0 30.7 µg/kg wet 30.0 32.0 µg/kg wet 30.0 21.0 µg/kg wet 20.0 21.1 µg/kg wet 20.0 21.2 µg/kg wet 20.0 21.2 µg/kg wet 20.0 21.1 µg/kg wet 20.0 21.2 µg/kg wet 20.0 21.1 µg/kg wet 20.0 21.2 µg/kg wet 20.0 21.3 µg/kg wet 20.0 21.4 µg/kg wet 20.0 21.5 µg/kg wet 20.0 23.4 µg/kg wet 20.0 23.5 µg/kg wet 20.0 24.6 µg/kg wet 20.0 24.6 µg/kg wet 20.0 25.8 µg/kg wet 20.0 26.9 QM9 µg/kg wet 20.0 27.9 µg/kg wet 20.0 28.8 µg/kg wet 20.0 29.1 µg/kg wet 20.0 29.1 µg/kg wet 20.0 29.2 µg/kg wet 20.0 21.1 µg/kg wet 20.0 21.2 µg/kg wet 20.0 23.3 µg/kg wet 20.0 24.4 µg/kg wet 20.0 25.5 µg/kg wet 20.0 26.6 µg/kg wet 20.0 27.1 µg/kg wet 20.0 28.2 µg/kg wet 20.0 29.3 µg/kg wet 20.0 20.0 µg/kg wet 20.0 21.1 µg/kg wet 20.0 22.2 µg/kg wet 20.0 23.5 µg/kg wet 20.0 23.5 µg/kg wet 20.0 24.6 µg/kg wet 20.0 25.1 µg/kg wet 20.0 26.4 QM9 µg/kg wet 20.0 27.5 µg/kg wet 20.0 28.5 µg/kg wet 20.0 29.5 µg/kg wet 20.0 20.0 µg/kg wet 20.0 21.5 µg/kg wet 20.0 22.6 µg/kg wet 20.0 21.5 µg/kg wet 20.0 22.6 µg/kg wet 20.0 21.5 µg/kg wet 20.0 21.5 µg/kg wet 20.0 22.6 µg/kg wet 20.0 21.1 µg/kg wet 20.0 22.2 µg/kg wet 20.0 22.3 µg/kg wet 20.0 22.4 µg/kg wet 20.0 22.4 µg/kg wet 20.0 22.4 µg/kg wet 20.0 22.4 µg/kg wet 20.0 22.6 µg/kg wet 20.0	215 μg/kg wet 200 107 179 μg/kg wet 200 90 22.9 μg/kg wet 20.0 120 459 μg/kg wet 20.0 115 29.6 μg/kg wet 30.0 99 30.7 μg/kg wet 30.0 102 32.0 μg/kg wet 30.0 107 Prepared & Analyzed: 12- 21.0 μg/kg wet 20.0 105 22.2 μg/kg wet 20.0 108 21.6 μg/kg wet 20.0 108 21.2 μg/kg wet 20.0 106 21.9 μg/kg wet 20.0 106 21.9 μg/kg wet 20.0 105 24.4 μg/kg wet 20.0 122 26.9 QM9 μg/kg wet 20.0 135 21.8 μg/kg wet 20.0 106 21.2 μg/kg wet 20.0 117 23.4 μg/kg wet <td< td=""><td> 179</td><td> 215</td></td<>	179	215

.nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
atch 1121017 - SW846 5030 Soil (high level)										
LCS Dup (1121017-BSD1)					Pre	epared & Ar	nalvzed: 12	-Oct-11		
2-Hexanone (MBK)	22.4		μg/kg wet		20.0		112	70-130	8	25
Isopropylbenzene	22.7		μg/kg wet		20.0		113	70-130	11	25
4-Isopropyltoluene	23.5		μg/kg wet		20.0		118	70-130	10	25
Methyl tert-butyl ether	20.5		μg/kg wet		20.0		102	70-130	5	25
4-Methyl-2-pentanone (MIBK)	18.1		μg/kg wet		20.0		90	70-130	3	50
Methylene chloride	19.4		μg/kg wet		20.0		97	70-130	8	25
Naphthalene	20.0		μg/kg wet		20.0		100	70-130	3	25
n-Propylbenzene	23.4		μg/kg wet		20.0		117	70-130	11	25
Styrene	21.0		μg/kg wet		20.0		105	70-130	10	25
1,1,2-Tetrachloroethane	24.2		μg/kg wet		20.0		121	70-130	7	25
1,1,2,2-Tetrachloroethane	24.3		μg/kg wet		20.0		122	70-130	0.2	25
Tetrachloroethene	19.8		μg/kg wet		20.0		99	70-130	9	25
Toluene	20.7		μg/kg wet		20.0		104	70-130	10	25
1,2,3-Trichlorobenzene	21.9		μg/kg wet		20.0		110	70-130	3	25
1,2,4-Trichlorobenzene	20.3		μg/kg wet		20.0		102	70-130	4	25
1,3,5-Trichlorobenzene	20.6		μg/kg wet		20.0		103	70-130	8	25
1,1,1-Trichloroethane	24.4		μg/kg wet		20.0		122	70-130	8	25
1,1,2-Trichloroethane	22.0		μg/kg wet		20.0		110	70-130	6	25
Trichloroethene	21.3		μg/kg wet		20.0		107	70-130	9	25
Trichlorofluoromethane (Freon 11)	22.7		μg/kg wet		20.0		114	70-130	7	50
1,2,3-Trichloropropane	22.6		μg/kg wet		20.0		113	70-130	4	25
1,2,4-Trimethylbenzene	24.4		μg/kg wet		20.0		122	70-130	9	25
1,3,5-Trimethylbenzene	24.7		μg/kg wet		20.0		123	70-130	11	25
Vinyl chloride	21.5		μg/kg wet		20.0		108	70-130	9	25
m,p-Xylene	47.4		μg/kg wet		40.0		118	70-130	9	25
o-Xylene	24.5		μg/kg wet		20.0		123	70-130	10	25
Tetrahydrofuran	20.7		μg/kg wet		20.0		104	70-130	4	25
Ethyl ether	20.8		μg/kg wet		20.0		104	70-130	5	50
Tert-amyl methyl ether	21.4		μg/kg wet		20.0		107	70-130	6	25
Ethyl tert-butyl ether	21.2		μg/kg wet		20.0		106	70-130	9	25
Di-isopropyl ether	20.8		μg/kg wet		20.0		104	70-130	6	25
Tert-Butanol / butyl alcohol	228		μg/kg wet		200		114	70-130	6	25
1,4-Dioxane	178		μg/kg wet		200		89	70-130	1	25
trans-1,4-Dichloro-2-butene	25.2		μg/kg wet		20.0		126	70-130	5	25
Ethanol	484		μg/kg wet		400		121	70-130	5	30
Surrogate: 4-Bromofluorobenzene	29.9		μg/kg wet		30.0		100	70-130		
Surrogate: Toluene-d8	29.0		μg/kg wet		30.0		97	70-130		
Surrogate: 1,2-Dichloroethane-d4	30.6		μg/kg wet		30.0		102	70-130		
Surrogate: Dibromofluoromethane	31.7		μg/kg wet		30.0		106	70-130		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1120918 - General Preparation										
<u>Duplicate (1120918-DUP1)</u>			Source: SI	B36871-01	Pre	epared & A	nalyzed: 11-0	Oct-11		
% Solids	75.9		%			77.6			2	20

Notes and Definitions

QM9 The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were

accepted based on LCS/LCSD or SRM recoveries within the control limits.

VOC8 Reporting limits reflect SW846 5030 extraction technique due to interference and/or QC issues using SW846 5035A

extraction technique.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Nicole Leja

SB
308
7
3

I ☐ Fridge temp °C ☐ Freezer temp °C	Ambient □ lccd ☑ Kefrigerated □ Fridge temp.	27		194				and I	The state of the s
Kbaxter & ecsconsult.com	É-mail to	1200 4	11.6-16	かり		J.	1	8/11 1200	5 3
	p°C	Time: Temp°C		Date:		Received by:	A Re	Relinquished by:	Relin
trafeis)					f j			en de la companya de	
in feezer in									
(foren vous are									
	5								
120									
amberslass								ē ^r	
-7 unpr. 807									
Di Voas			i,						
2 502CM								1	
- 1 Meath road		X	description	50 3	9	1930	9/28/11	F-3-5 (8')	10:11 Car
State-specific reporting standards:			#	-	T	Time:	Date:	Sample Id:	Lab Id:
Other		of P	of A	latrix of V	ype				
NJReduced* NJFull*			- 11177				C=Composite	G=Grab C=	
☐ Standard ☐ No QC ☐ DQA*		c 26		 Vial					
QA/QC Reporting Level		OB		s					
MA DEP MCP CAM Report: Yes ☐ No☐ CT DPH RCP Report: Yes ☐ No ☐	Analyses:		Containers:			WW=Wastewater =Sludge A=Air	S	GW=G Water	DW=Drinking Water O=Oil SW= Surface
* additional charges may apply		2					10		8= NaHSO ₄
QA/QC Reporting Notes:	List preservative code below:		7=СН ₃ ОН	6=Ascorbic Acid		3 5=NaOH	3=H ₂ SO ₄ 4=HNO ₃	3 2-HC1	1=Na ₂ S2O ₃
egler	Sampler(s): Kg & D	2003	RQN:60		lo.:	P.O. No.:	tr.	the Dax	Project Mgr.
State: Ma	Location: JOMESVILLE						40%	るうから一名	Tolophone #:
K	Site Name: CONWAY) Park						108	IN, MA CI	Mobi
613	Project No.: 05-21661			er?	e To:1	Invoice To:		45 24	Report To:
Nnn. 24-nour notinication needed for rusnes. Samples disposed of after 60 days unless otherwise instructed.	· Mn. 24 · Samples otherwi		of _	Page	to arro			SPECTRUM ANALYTICAL, INC- Featuring HANIBAL TECHNOLOGY	SPE
Rush TAT - Date Needed: All TATs subject to laboratory approval.	RU	HAIN OF CUSTODY RECC	10T	CU		HAIN			
Special Handling: Standard TAT - 7 to 10 business days	,	, , , ,))) 1		 }	1	
10 - 2011									

Report Date: 20-Oct-11 12:19

Laboratory Report

Environmental Compliance Services 10 State Street Woburn, MA 01801 Attn: Kathy Baxter

Project: Conway Park - Somerville, MA

Project #: 05-216613

Laboratory IDClient Sample IDMatrixDate SampledDate ReceivedSB37133-01F-S-5(8')Soil05-Oct-11 12:0006-Oct-11 18:20

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Vicole Leja

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please note that this report contains 11 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: Spe	ectrum Analytical, Inc.		Project #: 05-216	613						
Proje	ct Location: Conv	way Park - Somerville, M	IA	RTN:							
This i	form provides cer	tifications for the follow	ving data set:	BB37133-01							
Matr	ices: Soil										
CAM	Protocol										
/	260 VOC AM II A	7470/7471 Hg CAM III B	MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP AP CAM IX A	Н				
	270 SVOC AM II B	7010 Metals CAM III C	MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B					
	010 Metals AM III A	6020 Metals CAM III D	8082 PCB CAM V A	9012 Total Cyanide/PAC CAM VI A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlor CAM VIII B	ate				
		Affirmative responses	to questions A through 1	F are required for "Presu	mptive Certainty" status						
A	_			cribed on the Chain of Cu epared/analyzed within m		✓ Yes	No				
В	protocol(s) followed?										
C	C Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances? ✓ Yes No										
D				ents specified in CAM VII Reporting of Analytical I		✓ Yes	No				
E		-		ed without significant moder ported for each method?	lification(s)?	Yes Yes	No No				
F		-	-	non-conformances identification questions A through E)?	ed and	✓ Yes	No				
		Responses to quest	ions G, H and I below ar	re required for "Presump	tive Certainty" status						
G	Were the reportir	ng limits at or below all (CAM reporting limits spe	cified in the selected CAN	M protocol(s)?	Yes •	/ No				
		t achieve "Presumptive Ce 310 CMR 40. 1056 (2)(k)		essarily meet the data usabi	lity and representativeness						
Н	Were all QC perf	Formance standards speci	fied in the CAM protoco	l(s) achieved?		✓ Yes	No				
I	Were results repo	orted for the complete an	alyte list specified in the	selected CAM protocol(s)	?	✓ Yes	No				
All ne	gative responses are	e addressed in a case narra	tive on the cover page of th	is report.							
	All negative responses are addressed in a case narrative on the cover page of this report. I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.										
	Nicole Leja										
	Nicole Leja Laboratory Director Date: 10/20/2011										

 ${\it This\ laboratory\ report\ is\ not\ valid\ without\ an\ authorized\ signature\ on\ the\ cover\ page.}$

CASE NARRATIVE:

The sample temperature upon receipt by Spectrum Analytical courier was recorded as 2.2 degrees Celsius. The condition of these samples was further noted as refrigerated. The samples were transported on ice to the laboratory facility and the temperature was recorded at 0.4 degrees Celsius upon receipt at the laboratory. Please refer to the Chain of Custody for details specific to sample receipt times.

An infrared thermometer with a tolerance of +/- 2.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Additional dilution factors may be required to keep analyte concentration within instrument calibration.

Method SW846 5035A is designed to use on samples containing low levels of VOCs, ranging from 0.5 to 200 ug/Kg. Target analytes that are less responsive to purge and trap may be present at concentrations over 200ug/Kg but may not be reportable in the methanol preserved vial (SW846 5030). This is the result of the inherent dilution factor required for the methanol preservation.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8260C

Calibration:

1110016

Analyte quantified by quadratic equation type calibration.

2-Butanone (MEK) Acetone

This affected the following samples:

1121001-BLK1 1121001-BS1 1121001-BSD1 F-S-5(8') S109106-ICV1 S109373-CCV1

4.8

1

5.6

μg/kg dry

87-68-3

Hexachlorobutadiene

< 5.6

1

SM2540 G Mod. 14-Oct-11 14-Oct-11

70-130 %

70-130 %

%

1,2-Dichloroethane-d4

Dibromofluoromethane

General Chemistry Parameters % Solids

1868-53-7

106

98

87.3

1121276

DT

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1121001 - SW846 5035A Soil (low level)							_			
Blank (1121001-BLK1)					Pre	epared: 12-	Oct-11 Ana	alyzed: 13-C	oct-11	
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 5.0		μg/kg wet	5.0				-		
Acetone	< 50.0		μg/kg wet	50.0						
Acrylonitrile	< 5.0		μg/kg wet	5.0						
Benzene	< 5.0		μg/kg wet	5.0						
Bromobenzene	< 5.0		μg/kg wet	5.0						
Bromochloromethane	< 5.0		μg/kg wet	5.0						
Bromodichloromethane	< 5.0		μg/kg wet	5.0						
Bromoform	< 5.0		μg/kg wet	5.0						
Bromomethane	< 10.0		μg/kg wet	10.0						
2-Butanone (MEK)	< 50.0		μg/kg wet	50.0						
n-Butylbenzene	< 5.0		μg/kg wet	5.0						
sec-Butylbenzene	< 5.0		μg/kg wet	5.0						
tert-Butylbenzene	< 5.0		μg/kg wet	5.0						
Carbon disulfide	< 10.0		μg/kg wet	10.0						
Carbon tetrachloride	< 5.0		μg/kg wet	5.0						
Chlorobenzene	< 5.0		μg/kg wet μg/kg wet	5.0						
Chloroethane	< 10.0		μg/kg wet	10.0						
Chloroform	< 5.0		μg/kg wet	5.0						
Chloromethane	< 10.0		μg/kg wet μg/kg wet	10.0						
2-Chlorotoluene	< 5.0		μg/kg wet	5.0						
4-Chlorotoluene	< 5.0		μg/kg wet	5.0						
1,2-Dibromo-3-chloropropane	< 10.0		μg/kg wet	10.0						
Dibromochloromethane	< 5.0		μg/kg wet	5.0						
1,2-Dibromoethane (EDB)	< 5.0		μg/kg wet	5.0						
Dibromomethane	< 5.0		μg/kg wet	5.0						
1,2-Dichlorobenzene	< 5.0		μg/kg wet	5.0						
1,3-Dichlorobenzene	< 5.0		μg/kg wet	5.0						
1,4-Dichlorobenzene	< 5.0		μg/kg wet	5.0						
Dichlorodifluoromethane (Freon12)	< 10.0		μg/kg wet	10.0						
1,1-Dichloroethane	< 5.0		μg/kg wet	5.0						
1,2-Dichloroethane	< 5.0		μg/kg wet	5.0						
1,1-Dichloroethene	< 5.0		μg/kg wet	5.0						
cis-1,2-Dichloroethene	< 5.0		μg/kg wet	5.0						
trans-1,2-Dichloroethene	< 5.0		μg/kg wet	5.0						
1,2-Dichloropropane	< 5.0		μg/kg wet	5.0						
1,3-Dichloropropane	< 5.0		μg/kg wet	5.0						
2,2-Dichloropropane	< 5.0		μg/kg wet	5.0						
1,1-Dichloropropene	< 5.0		μg/kg wet	5.0						
cis-1,3-Dichloropropene	< 5.0		μg/kg wet	5.0						
trans-1,3-Dichloropropene	< 5.0		μg/kg wet	5.0						
Ethylbenzene	< 5.0		μg/kg wet	5.0						
Hexachlorobutadiene	< 5.0		μg/kg wet	5.0						
2-Hexanone (MBK)	< 50.0		μg/kg wet	50.0						
Isopropylbenzene	< 5.0		μg/kg wet	5.0						
4-Isopropyltoluene	< 5.0		μg/kg wet	5.0						
Methyl tert-butyl ether	< 5.0		μg/kg wet	5.0						
4-Methyl-2-pentanone (MIBK)	< 50.0		μg/kg wet	50.0						
Methylene chloride	< 10.0		μg/kg wet	10.0						
Naphthalene	< 5.0		μg/kg wet	5.0						
n-Propylbenzene	< 5.0		μg/kg wet	5.0						
Styrene	< 5.0		μg/kg wet	5.0						
1,1,1,2-Tetrachloroethane	< 5.0		μg/kg wet	5.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1121001 - SW846 5035A Soil (low level)										
Blank (1121001-BLK1)					Pre	epared: 12-	Oct-11 Ana	alyzed: 13-C	ct-11	
1,1,2,2-Tetrachloroethane	< 5.0		μg/kg wet	5.0						
Tetrachloroethene	< 5.0		μg/kg wet	5.0						
Toluene	< 5.0		μg/kg wet	5.0						
1,2,3-Trichlorobenzene	< 5.0		μg/kg wet	5.0						
1,2,4-Trichlorobenzene	< 5.0		μg/kg wet	5.0						
1,3,5-Trichlorobenzene	< 5.0		μg/kg wet	5.0						
1,1,1-Trichloroethane	< 5.0		μg/kg wet	5.0						
1,1,2-Trichloroethane	< 5.0		μg/kg wet	5.0						
Trichloroethene	< 5.0		μg/kg wet	5.0						
Trichlorofluoromethane (Freon 11)	< 5.0		μg/kg wet	5.0						
1,2,3-Trichloropropane	< 5.0		μg/kg wet	5.0						
1,2,4-Trimethylbenzene	< 5.0		μg/kg wet	5.0						
1,3,5-Trimethylbenzene	< 5.0		μg/kg wet	5.0						
Vinyl chloride	< 5.0		μg/kg wet	5.0						
m,p-Xylene	< 10.0		μg/kg wet	10.0						
o-Xylene	< 5.0		μg/kg wet	5.0						
Tetrahydrofuran	< 10.0		μg/kg wet	10.0						
Ethyl ether	< 5.0		μg/kg wet	5.0						
Tert-amyl methyl ether	< 5.0		μg/kg wet	5.0						
Ethyl tert-butyl ether	< 5.0		µg/kg wet	5.0						
Di-isopropyl ether	< 5.0		μg/kg wet	5.0						
Tert-Butanol / butyl alcohol	< 50.0		μg/kg wet	50.0						
1.4-Dioxane	< 100		μg/kg wet	100						
trans-1,4-Dichloro-2-butene	< 25.0		μg/kg wet	25.0						
Ethanol	< 2000		μg/kg wet	2000						
				2000			105	70.100		
Surrogate: 4-Bromofluorobenzene	52.7		μg/kg wet		50.0		105	70-130		
Surrogate: Toluene-d8	50.6		μg/kg wet		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.6		μg/kg wet		50.0		105	70-130		
Surrogate: Dibromofluoromethane	49.0		μg/kg wet		50.0		98	70-130		
LCS (1121001-BS1)					<u>Pre</u>	epared: 12-		alyzed: 13-0	ct-11	
1,1,2-Trichlorotrifluoroethane (Freon 113)	17.6		μg/kg wet		20.0		88	70-130		
Acetone	20.5		μg/kg wet		20.0		103	70-130		
Acrylonitrile	18.7		μg/kg wet		20.0		93	70-130		
Benzene	18.8		μg/kg wet		20.0		94	70-130		
Bromobenzene	18.7		μg/kg wet		20.0		93	70-130		
Bromochloromethane	19.1		μg/kg wet		20.0		95	70-130		
Bromodichloromethane	17.9		μg/kg wet		20.0		89	70-130		
Bromoform	15.0		μg/kg wet		20.0		75	70-130		
Bromomethane	18.3		μg/kg wet		20.0		92	70-130		
2-Butanone (MEK)	16.5		μg/kg wet		20.0		83	70-130		
n-Butylbenzene	19.8		μg/kg wet		20.0		99	70-130		
sec-Butylbenzene	18.7		μg/kg wet		20.0		93	70-130		
tert-Butylbenzene	18.3		μg/kg wet		20.0		92	70-130		
Carbon disulfide	15.8		μg/kg wet		20.0		79	70-130		
Carbon tetrachloride	16.3		μg/kg wet		20.0		82	70-130		
Chlorobenzene	18.6		μg/kg wet		20.0		93	70-130		
Chloroethane	18.1		μg/kg wet		20.0		90	70-130		
Chloroform	17.8		μg/kg wet		20.0		89	70-130		
Chloromethane	17.6		μg/kg wet		20.0		88	70-130		
			· -							
2-Chlorotoluene	18.4		μg/kg wet		20.0		92	70-130		

nalyte(s)	Result	Flag Uni	ts *RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1121001 - SW846 5035A Soil (low level)									
LCS (1121001-BS1)				<u>Pr</u>	epared: 12-	Oct-11 Ana	alyzed: 13-C	Oct-11	
1,2-Dibromo-3-chloropropane	16.1	μg/kg	wet	20.0		80	70-130		
Dibromochloromethane	17.2	μg/kg		20.0		86	70-130		
1,2-Dibromoethane (EDB)	20.2	μg/kg		20.0		101	70-130		
Dibromomethane	19.3	µg/kg		20.0		97	70-130		
1,2-Dichlorobenzene	18.6	μg/kg		20.0		93	70-130		
1,3-Dichlorobenzene	19.0	μg/kg		20.0		95	70-130		
1,4-Dichlorobenzene	18.3	μg/kg		20.0		92	70-130		
Dichlorodifluoromethane (Freon12)	15.6	μg/kg		20.0		78	70-130		
1,1-Dichloroethane	18.0	μg/kg		20.0		90	70-130		
1,2-Dichloroethane	18.0	μg/kg		20.0		90	70-130		
1,1-Dichloroethene	18.1	μg/kg		20.0		90	70-130		
cis-1,2-Dichloroethene	18.7	μg/kg μg/kg		20.0		94	70-130		
trans-1,2-Dichloroethene	18.1	μg/kg μg/kg		20.0		91	70-130		
1,2-Dichloropropane	18.4	μg/kg μg/kg		20.0		92	70-130		
1,3-Dichloropropane	19.3	μg/kg μg/kg		20.0		96	70-130		
	15.5	μg/kg μg/kg		20.0		78	70-130		
2,2-Dichloropropane		μg/kg μg/kg		20.0		90	70-130		
1,1-Dichloropropene	18.1								
cis-1,3-Dichloropropene	17.9	μg/kg		20.0		90	70-130		
trans-1,3-Dichloropropene	17.6	μg/kg "		20.0		88	70-130		
Ethylbenzene	18.4	μg/kg 		20.0		92	70-130		
Hexachlorobutadiene	17.2	μg/kg		20.0		86	70-130		
2-Hexanone (MBK)	18.5	μg/kg		20.0		93	70-130		
Isopropylbenzene	18.3	μg/kg		20.0		91	70-130		
4-Isopropyltoluene	18.3	μg/kg		20.0		92	70-130		
Methyl tert-butyl ether	18.1	μg/kg	wet	20.0		91	70-130		
4-Methyl-2-pentanone (MIBK)	20.3	μg/kg	wet	20.0		102	70-130		
Methylene chloride	19.1	μg/kg	wet	20.0		95	70-130		
Naphthalene	19.7	μg/kg	wet	20.0		98	70-130		
n-Propylbenzene	18.8	μg/kg	wet	20.0		94	70-130		
Styrene	19.1	μg/kg	wet	20.0		95	70-130		
1,1,1,2-Tetrachloroethane	17.3	μg/kg	wet	20.0		87	70-130		
1,1,2,2-Tetrachloroethane	19.9	μg/kg	wet	20.0		99	70-130		
Tetrachloroethene	18.3	μg/kg	wet	20.0		91	70-130		
Toluene	18.8	μg/kg	wet	20.0		94	70-130		
1,2,3-Trichlorobenzene	19.6	μg/kg	wet	20.0		98	70-130		
1,2,4-Trichlorobenzene	18.9	μg/kg		20.0		95	70-130		
1,3,5-Trichlorobenzene	19.3	μg/kg		20.0		96	70-130		
1,1,1-Trichloroethane	16.8	μg/kg		20.0		84	70-130		
1,1,2-Trichloroethane	19.2	μg/kg		20.0		96	70-130		
Trichloroethene	18.6	μg/kg		20.0		93	70-130		
Trichlorofluoromethane (Freon 11)	16.9	μg/kg		20.0		84	70-130		
1,2,3-Trichloropropane	19.4	μg/kg		20.0		97	70-130		
1,2,4-Trimethylbenzene	18.6	μg/kg		20.0		93	70-130		
1,3,5-Trimethylbenzene	18.5	μg/kg μg/kg		20.0		92	70-130		
Vinyl chloride	18.4	μg/kg		20.0		92	70-130		
m,p-Xylene	36.7	μg/kg μg/kg		40.0		92	70-130		
o-Xylene	18.4	μg/kg μg/kg		20.0		92	70-130		
Tetrahydrofuran	18.4	μg/kg μg/kg		20.0		92 94	70-130 70-130		
Ethyl ether	19.1	μg/kg μg/kg		20.0		96	70-130		
·									
Tert-amyl methyl ether	18.3	μg/kg		20.0		92	70-130 70-130		
Ethyl tert-butyl ether Di-isopropyl ether	17.8 17.4	μg/kg μg/kg		20.0 20.0		89 87	70-130 70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
atch 1121001 - SW846 5035A Soil (low level)										
LCS (1121001-BS1)					Pre	epared: 12-	Oct-11 An	alyzed: 13-0	ct-11	
Tert-Butanol / butyl alcohol	185		μg/kg wet		200		92	70-130		
1,4-Dioxane	209		μg/kg wet		200		104	70-130		
trans-1,4-Dichloro-2-butene	15.1		μg/kg wet		20.0		75	70-130		
Ethanol	369		μg/kg wet		400		92	70-130		
Surrogate: 4-Bromofluorobenzene	52.0		μg/kg wet		50.0		104	70-130		
Surrogate: Toluene-d8	50.8		μg/kg wet		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	47.4		μg/kg wet		50.0		95	70-130		
Surrogate: Dibromofluoromethane	50.2		μg/kg wet		50.0		100	70-130		
LCS Dup (1121001-BSD1)			10 0		Pre	enared: 12-	Oct-11 An:	alyzed: 13-0	ct-11	
1,1,2-Trichlorotrifluoroethane (Freon 113)	17.7		μg/kg wet		20.0	sparca. 12	88	70-130	0.7	25
Acetone	18.4				20.0		92	70-130	11	50
Acrylonitrile	18.0	μg/kg wet			20.0			70-130	4	25
Benzene			μg/kg wet				90			25
	18.7		µg/kg wet		20.0 20.0		94 95	70-130 70-130	0.4 1	2: 2:
Bromoblersmethane	18.9		μg/kg wet							2
Bromochloromethane	19.2		μg/kg wet		20.0		96	70-130	0.5	
Bromodichloromethane	18.1		μg/kg wet		20.0		91	70-130	1	2
Bromoform	14.5		μg/kg wet		20.0		73	70-130	3	2
Bromomethane	18.4		μg/kg wet		20.0		92	70-130	0.4	50
2-Butanone (MEK)	16.4		μg/kg wet		20.0		82	70-130	1	50
n-Butylbenzene	19.9		μg/kg wet		20.0		99	70-130	0.5	2
sec-Butylbenzene	18.9		μg/kg wet		20.0		94	70-130	1	2
tert-Butylbenzene	18.5		μg/kg wet		20.0		92	70-130	0.9	2
Carbon disulfide	16.2		μg/kg wet		20.0		81	70-130	2	2
Carbon tetrachloride	16.5		μg/kg wet		20.0		83	70-130	1	2
Chlorobenzene	18.6		μg/kg wet		20.0		93	70-130	0.2	2
Chloroethane	18.0		μg/kg wet		20.0		90	70-130	0.5	50
Chloroform	18.1		μg/kg wet		20.0		90	70-130	1	2
Chloromethane	17.6		μg/kg wet		20.0		88	70-130	0.2	2
2-Chlorotoluene	18.1		μg/kg wet		20.0		91	70-130	1	2
4-Chlorotoluene	18.8		μg/kg wet		20.0		94	70-130	0.5	2
1,2-Dibromo-3-chloropropane	14.8		μg/kg wet		20.0		74	70-130	8	2
Dibromochloromethane	16.9		μg/kg wet		20.0		84	70-130	2	5
1,2-Dibromoethane (EDB)	19.6		μg/kg wet		20.0		98	70-130	3	2
Dibromomethane	19.0		μg/kg wet		20.0		95	70-130	2	2
1,2-Dichlorobenzene	18.4		μg/kg wet		20.0		92	70-130	0.6	2
1,3-Dichlorobenzene	19.1		μg/kg wet		20.0		96	70-130	0.4	2
1,4-Dichlorobenzene	18.3		μg/kg wet		20.0		92	70-130	0	2
Dichlorodifluoromethane (Freon12)	15.5		μg/kg wet		20.0		78	70-130	0.5	50
1,1-Dichloroethane	18.2				20.0		91	70-130	1	25
			μg/kg wet		20.0		89	70-130		2
1,2-Dichloroethane	17.7		μg/kg wet						2	
1,1-Dichloroethene	18.1		μg/kg wet		20.0		90	70-130	0.2	25
cis-1,2-Dichloroethene	18.8		μg/kg wet		20.0		94	70-130	0.4	25
trans-1,2-Dichloroethene	18.7		μg/kg wet		20.0		93	70-130	3	25
1,2-Dichloropropane	18.6		μg/kg wet		20.0		93	70-130	0.9	25
1,3-Dichloropropane	19.0		μg/kg wet		20.0		95	70-130	2	25
2,2-Dichloropropane	15.6		μg/kg wet		20.0		78	70-130	8.0	25
1,1-Dichloropropene	18.2		μg/kg wet		20.0		91	70-130	0.9	25
cis-1,3-Dichloropropene	17.8		μg/kg wet		20.0		89	70-130	0.4	25
trans-1,3-Dichloropropene	17.2		μg/kg wet		20.0		86	70-130	2	25
Ethylbenzene	18.4		μg/kg wet		20.0		92	70-130	0.5	25
Hexachlorobutadiene	17.4		μg/kg wet		20.0		87	70-130	2	50

.nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
atch 1121001 - SW846 5035A Soil (low level)										
LCS Dup (1121001-BSD1)					Pre	enared: 12-	Oct-11 An	alyzed: 13-O	ct-11	
2-Hexanone (MBK)	17.2		70-130	7	25					
Isopropylbenzene	18.4		μg/kg wet μg/kg wet		20.0 20.0		86 92	70-130	0.7	25
4-Isopropyltoluene	18.6		μg/kg wet		20.0		93	70-130	1	25
Methyl tert-butyl ether	17.8		μg/kg wet		20.0		89	70-130	2	25
4-Methyl-2-pentanone (MIBK)	19.2		μg/kg wet		20.0		96	70-130	6	50
Methylene chloride	18.8		μg/kg wet		20.0		94	70-130	2	25
Naphthalene	19.3		μg/kg wet		20.0		96	70-130	2	25
n-Propylbenzene	19.0		μg/kg wet		20.0		95	70-130	1	25
Styrene	19.1		μg/kg wet		20.0		96	70-130	0.2	25
1,1,1,2-Tetrachloroethane	17.2		μg/kg wet		20.0		86	70-130	0.7	25
1,1,2,2-Tetrachloroethane	19.3		μg/kg wet		20.0		97	70-130	3	25
Tetrachloroethene	18.8		μg/kg wet		20.0		94	70-130	2	25
Toluene	18.8		μg/kg wet		20.0		94	70-130	0.3	25
1,2,3-Trichlorobenzene	19.6		μg/kg wet		20.0		98	70-130	0.3	25
1,2,4-Trichlorobenzene	19.1		μg/kg wet		20.0		95	70-130	0.9	25
1,3,5-Trichlorobenzene	19.5		μg/kg wet		20.0		97	70-130	0.9	25
1,1,1-Trichloroethane	16.9		μg/kg wet		20.0		84	70-130	0.4	25
1,1,2-Trichloroethane	19.0		µg/kg wet		20.0		95	70-130	0.9	25
Trichloroethene	18.6		μg/kg wet		20.0		93	70-130	0.05	25
Trichlorofluoromethane (Freon 11)	17.0		μg/kg wet		20.0		85	70-130	0.7	50
1,2,3-Trichloropropane	19.0		μg/kg wet		20.0		95	70-130	2	25
1,2,4-Trimethylbenzene	18.7		μg/kg wet		20.0		94	70-130	0.3	25
1,3,5-Trimethylbenzene	18.7		μg/kg wet		20.0		93	70-130	1	25
Vinyl chloride	18.4		μg/kg wet		20.0		92	70-130	0.3	25
m,p-Xylene	37.2		μg/kg wet		40.0		93	70-130	1	25
o-Xylene	18.6		μg/kg wet		20.0		93	70-130	0.8	25
Tetrahydrofuran	17.6		μg/kg wet		20.0		88	70-130	6	25
Ethyl ether	18.8		μg/kg wet		20.0		94	70-130	2	50
Tert-amyl methyl ether	18.0		μg/kg wet		20.0		90	70-130	2	25
Ethyl tert-butyl ether	17.5		μg/kg wet		20.0		88	70-130	1	25
Di-isopropyl ether	17.3		μg/kg wet		20.0		87	70-130	0.3	25
Tert-Butanol / butyl alcohol	173		μg/kg wet		200		87	70-130	6	25
1,4-Dioxane	208		μg/kg wet		200		104	70-130	0.6	25
trans-1,4-Dichloro-2-butene	14.4		μg/kg wet		20.0		72	70-130	4	25
Ethanol	342		μg/kg wet		400		86	70-130	8	30
Surrogate: 4-Bromofluorobenzene	51.4		μg/kg wet		50.0		103	70-130		
Surrogate: Toluene-d8	50.2		μg/kg wet		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	46.3		μg/kg wet		50.0		93	70-130		
Surrogate: Dibromofluoromethane	49.6		μg/kg wet		50.0		99	70-130		

Notes and Definitions

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Kimberly Wisk

May Ta	1015 11 1600 Chill Ha	Relinquished by:							51133.01 F-5-5 8 10 5/11	Lab Id: Sample Id: Date:	G=Grab C=Composite		O=Oil SW= Surface Water SO=Soil SL=Sludge	Deionized Water 10	$1=Na_2S2O_3$ $2=HO1$ $3=H_2SO_4$ $4=HNO_3$	Project Mgr. Knthx Rax H	70.000	19819 WY CLASS	Report To: E(S	SPECTRUM ANALYTICAL, INC Featuring HANIBAL TECHNOLOGY		2
man (0/6/1/ 18:3	2000 (0/6/11 125	Received by: Date: Time:							1200 6 50 31	Time: Type Matrix # of V # of A # of C # of P	OA V mber lear G	Tials Glass	WW=Wastewater Containers:	11=	O ₃ 5=NaOH 6=Ascorbic Acid 7=CH ₃ OH	P.O. No.: RQN: QQO		9d n	Invoice To: 465	Page of	CHAIN OF CUSTODY RECOR	
C = Freezer temp		Temp°C		treaper	are in the	- WDitzovara	2 Ditt, a Year	1 mech va	X 1 amber ia	O Other OTHER II* OTHER V*		QA/QC Reporting Level □ Standard □ No QC □ DQA*	Analyses: MA DEP MCP CAM Report: Yes □ No □ CT DPH RCP Report: Yes □ No □	* additional charges may apply	List preservative code below: QA/QC Reporting Notes:	3 Sampler(s): Kate 7) egler	Location: DOM- IVILL State: M	Site Name: L'ODWAD Palk	Project No.: 05-216613	 Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed. 	6	Special Handling: X Standard TAT - 7 to 10 business days

63

Report Date: 20-Oct-11 16:30

□ Re-Issued Report □ Revised Report

HANIBAL TECHNOLOGY

Laboratory Report

Environmental Compliance Services 10 State Street Woburn, MA 01801

Attn: Kathy Baxter

Project: Conway Park - Somerville, MA

Project #: 05-216613

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB37225-01	F-N-6 (8')	Soil	06-Oct-11 00:00	07-Oct-11 17:30
SB37225-02	F-S-6 (4')	Soil	06-Oct-11 00:00	07-Oct-11 17:30
SB37225-03	F-S-6 (8')	Soil	06-Oct-11 00:00	07-Oct-11 17:30

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Nicole Leja

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes.

Please note that this report contains 23 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

The following outlines the condition of all EPH samples contained within this report upon laboratory receipt.

Matrices	Soil				
Containers	✓ Satisfactory				
Aqueous Preservative	✓ N/A	pH <u>≤</u> 2	pH>2	pH adjusted to <2 in lab	
Temperature	Received on ice	✓	Received at 4 ± 2 °C		

Were all QA/QC procedures followed as required by the EPH method? *Yes*Were any significant modifications made to the EPH method as specified in Section 11.3? *No*Were all performance/acceptance standards for required QA/QC procedures achieved? *Yes*

I attest that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Authorized by:

Nicole Leja

Laboratory Director

Micole Leja

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: Spe	ectrum Analytical, Inc.		Project #: 05-216	613	
Proje	ct Location: Conv	way Park - Somerville, M	A	RTN:		
This i	form provides cer	tifications for the follow	ing data set:	B37225-01 through SB37	7225-03	
Matr	ices: Soil					
CAM	Protocol					
/	260 VOC AM II A	7470/7471 Hg CAM III B	MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A
	270 SVOC AM II B	7010 Metals CAM III C	✓ MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B
	010 Metals AM III A	6020 Metals CAM III D	8082 PCB CAM V A	9012 Total Cyanide/PAC CAM VI A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B
		Affirmative responses t	o questions A through I	are required for "Presu	mptive Certainty" status	
A	•			cribed on the Chain of Cu epared/analyzed within m	2 . 1 . 2	✓ Yes No
В	Were the analytic protocol(s) follow		ciated QC requirements	specified in the selected (CAM	✓ Yes No
C	•	d corrective actions and are emented for all identified		s specified in the selected on-conformances?	CAM	✓ Yes No
D				nts specified in CAM VII Reporting of Analytical I		✓ Yes No
E		d APH Methods only: Was the		ed without significant mod ported for each method?	lification(s)?	✓ Yes No Yes No
F		-	-	non-conformances identification questions A through E)?	ed and	✓ Yes No
		Responses to question	ons G, H and I below ar	e required for "Presump	tive Certainty" status	•
G	Were the reporting	ng limits at or below all C	AM reporting limits spe	cified in the selected CAM	A protocol(s)?	Yes ✔ No
		t achieve "Presumptive Cer 310 CMR 40. 1056 (2)(k) a		essarily meet the data usabi	lity and representativeness	•
Н	Were all QC perf	Formance standards specif	ied in the CAM protocol	l(s) achieved?		Yes ✔ No
I	Were results repo	orted for the complete ana	lyte list specified in the	selected CAM protocol(s)	?	✓ Yes No
All ne	gative responses are	addressed in a case narrat	ive on the cover page of th	is report.		
				oon my personal inquiry of a knowledge and belief, accu	those responsible for obtaining attempts and complete.	ng the
					Nicole Leja Laboratory Director Date: 10/20/2011	ja

This laboratory report is not valid without an authorized signature on the cover page.

CASE NARRATIVE:

The sample temperature upon receipt by Spectrum Analytical courier was recorded as 6.0 degrees Celsius. The condition of these samples was further noted as refrigerated. The samples were transported on ice to the laboratory facility and the temperature was recorded at 2.3 degrees Celsius upon receipt at the laboratory. Please refer to the Chain of Custody for details specific to sample receipt times.

An infrared thermometer with a tolerance of +/- 2.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Additional dilution factors may be required to keep analyte concentration within instrument calibration.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

MADEP EPH 5/2004 R

Laboratory Control Samples:

1121369 BSD

2-Methylnaphthalene RPD 41% (25%) is outside individual acceptance criteria, but within overall method allowances.

Acenaphthene RPD 31% (25%) is outside individual acceptance criteria, but within overall method allowances.

Acenaphthylene RPD 38% (25%) is outside individual acceptance criteria, but within overall method allowances.

Anthracene RPD 28% (25%) is outside individual acceptance criteria, but within overall method allowances.

Benzo (a) anthracene RPD 35% (25%) is outside individual acceptance criteria, but within overall method allowances.

Benzo (a) pyrene RPD 34% (25%) is outside individual acceptance criteria, but within overall method allowances.

Benzo (b) fluoranthene RPD 42% (25%) is outside individual acceptance criteria, but within overall method allowances.

Benzo (g,h,i) perylene RPD 35% (25%) is outside individual acceptance criteria, but within overall method allowances.

Benzo (k) fluoranthene RPD 27% (25%) is outside individual acceptance criteria, but within overall method allowances.

Chrysene RPD 34% (25%) is outside individual acceptance criteria, but within overall method allowances.

MADEP EPH 5/2004 R

Laboratory Control Samples:

1121369 BSD

Dibenzo (a,h) anthracene RPD 37% (25%) is outside individual acceptance criteria, but within overall method allowances.

Fluoranthene RPD 30% (25%) is outside individual acceptance criteria, but within overall method allowances.

Fluorene RPD 35% (25%) is outside individual acceptance criteria, but within overall method allowances.

Indeno (1,2,3-cd) pyrene RPD 41% (25%) is outside individual acceptance criteria, but within overall method allowances.

Naphthalene RPD 42% (25%) is outside individual acceptance criteria, but within overall method allowances.

Phenanthrene RPD 31% (25%) is outside individual acceptance criteria, but within overall method allowances.

Pyrene RPD 27% (25%) is outside individual acceptance criteria, but within overall method allowances.

1121369-BSD1

The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.

2-Methylnaphthalene

Acenaphthene

Acenaphthylene

Anthracene

Benzo (a) anthracene

Benzo (a) pyrene

Benzo (b) fluoranthene

Benzo (g,h,i) perylene

Benzo (k) fluoranthene

Chrysene

Dibenzo (a,h) anthracene

Fluoranthene

Fluorene

Indeno (1,2,3-cd) pyrene

Naphthalene

Phenanthrene

Pyrene

SW846 8260C

Calibration:

1109007

Analyte quantified by quadratic equation type calibration.

 $1,\!2\text{-}Dibromo\text{-}3\text{-}chloropropane$

2-Hexanone (MBK)

4-Methyl-2-pentanone (MIBK)

Bromoform

cis-1,3-Dichloropropene

Dibromochloromethane

trans-1,3-Dichloropropene

This affected the following samples:

S108096-ICV1

SW846 8260C

Samples:

S109343-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

Methylene chloride (-20.6%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

```
1,2-Dibromo-3-chloropropane (26.1%)
Bromoform (27.6%)
```

This affected the following samples:

1121119-BLK1 1121119-BS1 1121119-BSD1 F-S-6 (8')

SB37225-03

F-S-6 (8')

Elevated Reporting Limits due to the presence of high levels of non-target analytes.

Sample Identification F-N-6 (8') SB37225-01				<u>Project #</u> 16613		<u>Matrix</u> Soil		lection Date 6-Oct-11 00			eceived -Oct-11	
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	t Batch	Cert.
Volatile Organic Compounds												
VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction	12-Oct-11	12-Oct-11	BD	1121081	

Sample Identification F-S-6 (4') SB37225-02				Project # 16613		<u>Matrix</u> Soil		lection Date 6-Oct-11 00			eceived -Oct-11	
CAS No. Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Organic Compounds												
VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction	12-Oct-11	12-Oct-11	BD	1121081	

F-S-6 (8')				<u>Client Pr</u> 05-21			<u>Matrix</u> Soil		ection Date Oct-11 00			ceived Oct-11	
SB37225 CAS No.	-03 ————————————————————————————————————	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
			8										
Volatile O	Organic Compounds VOC Extraction	Field extracted		N/A			1	VOC Soil Extraction	12-Oct-11	12-Oct-11	BD	1121081	
	Organic Compounds		R05										
Prepared 76-13-1	by method SW846 5030 S				220		ial weight:		12 0 - 11	42.0-4.44		1404440	
70-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 336		μg/kg dry	336	224	250	SW846 8260C	13-Oct-11	13-Oct-11	naa	1121119	1
67-64-1	Acetone	< 3360		μg/kg dry	3360	2520	250	"	"	"	"	"	
107-13-1	Acrylonitrile	< 336		μg/kg dry	336	301	250	II .	"	"	"	"	
71-43-2	Benzene	< 336		μg/kg dry	336	176	250	H	"	"	"	"	
108-86-1	Bromobenzene	< 336		μg/kg dry	336	214	250	"	"	"	"	"	
74-97-5	Bromochloromethane	< 336		μg/kg dry	336	110	250	"	"	"	"	"	
75-27-4	Bromodichloromethane	< 336		μg/kg dry	336	127	250	"	"	"	"	"	
75-25-2	Bromoform	< 336		μg/kg dry	336	232	250	"	"	"	"	"	
74-83-9	Bromomethane	< 672		μg/kg dry	672	605	250	"	"	"	"	"	
78-93-3	2-Butanone (MEK)	< 3360		μg/kg dry	3360	2880	250	"	"	"	"	"	
104-51-8	n-Butylbenzene	7,380		μg/kg dry	336	168	250	"	"	"	"	"	
135-98-8	sec-Butylbenzene	7,020		μg/kg dry	336	326	250	"	"	"	"	"	
98-06-6	tert-Butylbenzene	477		μg/kg dry	336	243	250	"	"	"	"	"	
75-15-0	Carbon disulfide	< 672		μg/kg dry	672	480	250	"	"	"	"	"	
56-23-5	Carbon tetrachloride	< 336		μg/kg dry	336	334	250	"	"	"	"	"	
108-90-7	Chlorobenzene	< 336		μg/kg dry	336	188	250	"	"	"	"	"	
75-00-3	Chloroethane	< 672		μg/kg dry	672	476	250	"	"	"	"	"	
67-66-3	Chloroform	< 336		μg/kg dry	336	164	250	"	"	"	"	"	
74-87-3	Chloromethane	< 672		μg/kg dry	672	169	250			"	"		
95-49-8	2-Chlorotoluene	< 336		μg/kg dry	336	205	250		"	"	"	"	
106-43-4	4-Chlorotoluene	< 336		μg/kg dry	336	301	250						
96-12-8	1,2-Dibromo-3-chloroprop ane	< 672		μg/kg dry	672	635	250	"		"			
124-48-1	Dibromochloromethane	< 336		μg/kg dry	336	161	250	"	"	"	"	"	
106-93-4	1,2-Dibromoethane (EDB)	< 336		μg/kg dry	336	208	250	"	"	"	"		
74-95-3	Dibromomethane	< 336		μg/kg dry	336	335	250				"		
95-50-1	1,2-Dichlorobenzene	< 336		μg/kg dry 	336	270	250			"	"	"	
541-73-1	1,3-Dichlorobenzene	< 336		μg/kg dry	336	334	250						
106-46-7	1,4-Dichlorobenzene	< 336		μg/kg dry	336	227	250	"					
75-71-8	Dichlorodifluoromethane (Freon12)	< 672		μg/kg dry	672	567	250						
75-34-3	1,1-Dichloroethane	< 336		μg/kg dry	336	307	250	"	"	"	"	"	
107-06-2	1,2-Dichloroethane	< 336		μg/kg dry	336	188	250	"	"	"	"	"	
75-35-4	1,1-Dichloroethene	< 336		μg/kg dry	336	167	250	"	"	"	"	"	
156-59-2	cis-1,2-Dichloroethene	< 336		μg/kg dry	336	141	250		"	"	"	"	
156-60-5	trans-1,2-Dichloroethene	< 336		μg/kg dry	336	279	250	п	"	"	"	"	
78-87-5	1,2-Dichloropropane	< 336		μg/kg dry	336	171	250	п	"	"	"	"	
142-28-9	1,3-Dichloropropane	< 336		μg/kg dry	336	169	250	п	"	"	"	"	
594-20-7	2,2-Dichloropropane	< 336		μg/kg dry	336	135	250	н	"	"	"	"	
563-58-6	1,1-Dichloropropene	< 336		μg/kg dry	336	207	250	m m	"	"	"	"	
10061-01-5	cis-1,3-Dichloropropene	< 336		μg/kg dry	336	183	250	m m	"	"	"	"	
10061-02-6	trans-1,3-Dichloropropene	< 336		μg/kg dry	336	94.7	250	"	"	"	"	"	
100-41-4	Ethylbenzene	< 336		μg/kg dry	336	205	250	II .	"	"	"	"	

70-130 %

1868-53-7

Dibromofluoromethane

Extractable Petroleum Hydrocarbons

91

F-S-6 (8')				<u>Client Property</u> 05-21			<u>Matrix</u> Soil	'	ection Date 6-Oct-11 00			ceived Oct-11	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Extractab	le Petroleum Hydrocarbons												
	hatic/Aromatic Ranges by method SW846 3545A												
	C9-C18 Aliphatic Hydrocarbons	4,380		mg/kg dry	11.4	1.68	1	MADEP EPH 5/2004 R	17-Oct-11	19-Oct-11	MP	1121369	i
	C19-C36 Aliphatic Hydrocarbons	585		mg/kg dry	11.4	5.58	1	"	"	"	"	"	
	C11-C22 Aromatic Hydrocarbons	1,330		mg/kg dry	11.4	4.13	1	"	"	"	"	"	
	Unadjusted C11-C22 Aromatic Hydrocarbons	1,360		mg/kg dry	11.4	4.13	1	"	"	"	"	"	
	Total Petroleum Hydrocarbons	6,290		mg/kg dry	11.4	11.4	1	"	"	"	"	"	
	Unadjusted Total Petroleum Hydrocarbons	6,330		mg/kg dry	11.4	11.4	1	"	u	"	"	"	
	get PAH Analytes by method SW846 3545A												
91-20-3	Naphthalene	< 0.380		mg/kg dry	0.380	0.199	1	"	"	"	"	"	
91-57-6	2-Methylnaphthalene	13.3		mg/kg dry	0.380	0.198	1	"	"	"	"		
208-96-8	Acenaphthylene	< 0.380		mg/kg dry	0.380	0.222	1	"	"	"			
83-32-9	Acenaphthene	2.85		mg/kg dry	0.380	0.222	1	"	"	"		"	
86-73-7	Fluorene	3.48		mg/kg dry	0.380	0.224	1	"	"	"		"	
85-01-8	Phenanthrene	7.25		mg/kg dry	0.380	0.259	1	"	"	"		"	
120-12-7	Anthracene	0.967		mg/kg dry	0.380	0.281	1	m .	"	"	"	"	
206-44-0	Fluoranthene	0.864		mg/kg dry	0.380	0.255	1	"	"	"		"	
129-00-0	Pyrene	0.906		mg/kg dry	0.380	0.274	1	m .	"	"	"	"	
56-55-3	Benzo (a) anthracene	< 0.380		mg/kg dry	0.380	0.275	1	"	"	"		"	
218-01-9	Chrysene	< 0.380		mg/kg dry	0.380	0.295	1	"	"	"		"	
205-99-2	Benzo (b) fluoranthene	< 0.380		mg/kg dry	0.380	0.339	1	"	"	"		"	
207-08-9	Benzo (k) fluoranthene	< 0.380		mg/kg dry	0.380	0.317	1	"	"	"	"	"	
50-32-8	Benzo (a) pyrene	< 0.380		mg/kg dry	0.380	0.255	1	"	"	"		"	
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.380		mg/kg dry	0.380	0.338	1	"	"	"		"	
53-70-3	Dibenzo (a,h) anthracene	< 0.380		mg/kg dry	0.380	0.275	1	"	"	"	"	"	
191-24-2	Benzo (g,h,i) perylene	< 0.380		mg/kg dry	0.380	0.285	1	"		"	"	"	
Surrogate	recoveries:												
3386-33-2	1-Chlorooctadecane	62			40-14	0 %				"	"	"	
84-15-1	Ortho-Terphenyl	51			40-14				"	"	"	"	
321-60-8	2-Fluorobiphenyl	40			40-14			"		"	"	"	
	Chemistry Parameters	-											

%

% Solids

84.2

SM2540 G Mod. 17-Oct-11 17-Oct-11 DT 1121412

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1121119 - SW846 5030 Soil (high level)										
Blank (1121119-BLK1)					Pre	epared & Ar	nalyzed: 13-	Oct-11		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 50.0		μg/kg wet	50.0						
Acetone	< 500		μg/kg wet	500						
Acrylonitrile	< 50.0		μg/kg wet	50.0						
Benzene	< 50.0		μg/kg wet	50.0						
Bromobenzene	< 50.0		μg/kg wet	50.0						
Bromochloromethane	< 50.0		μg/kg wet	50.0						
Bromodichloromethane	< 50.0		μg/kg wet	50.0						
Bromoform	< 50.0		μg/kg wet	50.0						
Bromomethane	< 100		μg/kg wet	100						
2-Butanone (MEK)	< 500		μg/kg wet	500						
n-Butylbenzene	< 50.0		μg/kg wet	50.0						
sec-Butylbenzene	< 50.0		μg/kg wet	50.0						
tert-Butylbenzene	< 50.0		μg/kg wet	50.0						
Carbon disulfide	< 100		μg/kg wet	100						
Carbon tetrachloride	< 50.0		μg/kg wet	50.0						
Chlorobenzene	< 50.0		μg/kg wet	50.0						
Chloroethane	< 100		μg/kg wet	100						
Chloroform	< 50.0		μg/kg wet	50.0						
Chloromethane	< 100		μg/kg wet	100						
2-Chlorotoluene	< 50.0		μg/kg wet	50.0						
4-Chlorotoluene	< 50.0		μg/kg wet	50.0						
1,2-Dibromo-3-chloropropane	< 100		μg/kg wet	100						
Dibromochloromethane	< 50.0		μg/kg wet	50.0						
1,2-Dibromoethane (EDB)	< 50.0		μg/kg wet	50.0						
Dibromomethane	< 50.0		μg/kg wet	50.0						
1,2-Dichlorobenzene	< 50.0		μg/kg wet	50.0						
1,3-Dichlorobenzene	< 50.0		μg/kg wet	50.0						
1,4-Dichlorobenzene	< 50.0		μg/kg wet	50.0						
Dichlorodifluoromethane (Freon12)	< 100		μg/kg wet	100						
1,1-Dichloroethane	< 50.0		μg/kg wet	50.0						
1,2-Dichloroethane	< 50.0		μg/kg wet	50.0						
1,1-Dichloroethene	< 50.0		μg/kg wet	50.0						
cis-1,2-Dichloroethene	< 50.0		μg/kg wet	50.0						
trans-1,2-Dichloroethene	< 50.0		μg/kg wet	50.0						
1,2-Dichloropropane	< 50.0		μg/kg wet	50.0						
1,3-Dichloropropane	< 50.0		μg/kg wet	50.0						
2,2-Dichloropropane	< 50.0		μg/kg wet	50.0						
1,1-Dichloropropene	< 50.0		μg/kg wet	50.0						
cis-1,3-Dichloropropene	< 50.0		μg/kg wet	50.0						
trans-1,3-Dichloropropene	< 50.0		μg/kg wet	50.0						
Ethylbenzene	< 50.0		μg/kg wet	50.0						
Hexachlorobutadiene	< 50.0		μg/kg wet	50.0						
2-Hexanone (MBK)	< 500		μg/kg wet	500						
Isopropylbenzene	< 50.0		μg/kg wet	50.0						
4-Isopropyltoluene	< 50.0		μg/kg wet	50.0						
Methyl tert-butyl ether	< 50.0		μg/kg wet	50.0						
4-Methyl-2-pentanone (MIBK)	< 500		μg/kg wet	500						
Methylene chloride	< 100		μg/kg wet	100						
Naphthalene	< 50.0		μg/kg wet	50.0						
n-Propylbenzene	< 50.0		μg/kg wet	50.0						
Styrene	< 50.0		μg/kg wet	50.0						
1,1,1,2-Tetrachloroethane	< 50.0		μg/kg wet	50.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1121119 - SW846 5030 Soil (high level)										
Blank (1121119-BLK1)					Pre	epared & Ar	nalyzed: 13-	Oct-11		
1,1,2,2-Tetrachloroethane	< 50.0		μg/kg wet	50.0						
Tetrachloroethene	< 50.0		μg/kg wet	50.0						
Toluene	< 50.0		μg/kg wet	50.0						
1,2,3-Trichlorobenzene	< 50.0		μg/kg wet	50.0						
1,2,4-Trichlorobenzene	< 50.0		μg/kg wet	50.0						
1,3,5-Trichlorobenzene	< 50.0		μg/kg wet	50.0						
1,1,1-Trichloroethane	< 50.0		μg/kg wet	50.0						
1,1,2-Trichloroethane	< 50.0		μg/kg wet	50.0						
Trichloroethene	< 50.0		μg/kg wet	50.0						
Trichlorofluoromethane (Freon 11)	< 50.0		μg/kg wet	50.0						
1,2,3-Trichloropropane	< 50.0		μg/kg wet	50.0						
1,2,4-Trimethylbenzene	< 50.0		μg/kg wet	50.0						
1,3,5-Trimethylbenzene	< 50.0		μg/kg wet	50.0						
Vinyl chloride	< 50.0		μg/kg wet	50.0						
m,p-Xylene	< 100		μg/kg wet	100						
o-Xylene	< 50.0		μg/kg wet	50.0						
Tetrahydrofuran	< 100		μg/kg wet	100						
Ethyl ether	< 50.0		μg/kg wet	50.0						
Tert-amyl methyl ether	< 50.0		μg/kg wet	50.0						
Ethyl tert-butyl ether	< 50.0		μg/kg wet	50.0						
Di-isopropyl ether	< 50.0		μg/kg wet	50.0						
Tert-Butanol / butyl alcohol	< 500		μg/kg wet	500						
1,4-Dioxane	< 1000		μg/kg wet	1000						
trans-1,4-Dichloro-2-butene	< 250		μg/kg wet	250						
Ethanol	< 20000		μg/kg wet	20000						
					20.0		01	70 120		
Surrogate: 4-Bromofluorobenzene	27.4		μg/kg wet		30.0		91	70-130		
Surrogate: Toluene-d8	28.5		μg/kg wet		30.0		95	70-130		
Surrogate: 1,2-Dichloroethane-d4	27.1		μg/kg wet		30.0		90	70-130		
Surrogate: Dibromofluoromethane	30.0		μg/kg wet		30.0		100	70-130		
LCS (1121119-BS1)						epared & Ar	nalyzed: 13-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	17.0		μg/kg wet		20.0		85	70-130		
Acetone	18.5		μg/kg wet		20.0		93	70-130		
Acrylonitrile	17.7		μg/kg wet		20.0		88	70-130		
Benzene	19.3		μg/kg wet		20.0		96	70-130		
Bromobenzene	20.5		μg/kg wet		20.0		102	70-130		
Bromochloromethane	17.2		μg/kg wet		20.0		86	70-130		
Bromodichloromethane	20.6		μg/kg wet		20.0		103	70-130		
Bromoform	25.4		μg/kg wet		20.0		127	70-130		
Bromomethane	17.3		μg/kg wet		20.0		86	70-130		
2-Butanone (MEK)	17.4		μg/kg wet		20.0		87	70-130		
n-Butylbenzene	22.4		μg/kg wet		20.0		112	70-130		
sec-Butylbenzene	21.8		μg/kg wet		20.0		109	70-130		
tert-Butylbenzene	21.8		μg/kg wet		20.0		109	70-130		
Carbon disulfide	21.3		μg/kg wet		20.0		106	70-130		
Carbon tetrachloride	19.8		μg/kg wet		20.0		99	70-130		
Chlorobenzene	20.0		μg/kg wet		20.0		100	70-130		
Chloroethane	17.7		μg/kg wet		20.0		89	70-130		
Chloroform	18.5		μg/kg wet		20.0		92	70-130		
Chloromethane	19.6		μg/kg wet		20.0		98	70-130		
2-Chlorotoluene	20.4		μg/kg wet		20.0		102	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1121119 - SW846 5030 Soil (high level)										
LCS (1121119-BS1)					Pre	epared & Ar	nalyzed: 13-	Oct-11		
1,2-Dibromo-3-chloropropane	24.0		μg/kg wet		20.0		120	70-130		
Dibromochloromethane	22.7		μg/kg wet		20.0		114	70-130		
1,2-Dibromoethane (EDB)	20.1		μg/kg wet		20.0		101	70-130		
Dibromomethane	19.5		μg/kg wet		20.0		97	70-130		
1,2-Dichlorobenzene	21.2		μg/kg wet		20.0		106	70-130		
1,3-Dichlorobenzene	20.7		μg/kg wet		20.0		104	70-130		
1,4-Dichlorobenzene	20.4		μg/kg wet		20.0		102	70-130		
Dichlorodifluoromethane (Freon12)	17.6		μg/kg wet		20.0		88	70-130		
1,1-Dichloroethane	16.8		μg/kg wet		20.0		84	70-130		
1,2-Dichloroethane	17.2		μg/kg wet		20.0		86	70-130		
1,1-Dichloroethene	17.6		μg/kg wet		20.0		88	70-130		
cis-1,2-Dichloroethene	16.7		μg/kg wet		20.0		84	70-130		
trans-1,2-Dichloroethene	17.0		μg/kg wet		20.0		85	70-130		
1,2-Dichloropropane	19.9		μg/kg wet		20.0		100	70-130		
1,3-Dichloropropane	19.1		μg/kg wet		20.0		96	70-130		
2,2-Dichloropropane	21.6		μg/kg wet		20.0		108	70-130		
1,1-Dichloropropene	18.4		μg/kg wet		20.0		92	70-130		
cis-1,3-Dichloropropene	21.2		μg/kg wet		20.0		106	70-130		
trans-1,3-Dichloropropene	22.4		μg/kg wet		20.0		112	70-130		
Ethylbenzene	21.2		μg/kg wet		20.0		106	70-130		
Hexachlorobutadiene	21.1		μg/kg wet μg/kg wet		20.0		105	70-130		
2-Hexanone (MBK)	20.6		μg/kg wet		20.0		103	70-130		
Isopropylbenzene			μg/kg wet μg/kg wet		20.0		103	70-130		
	20.5				20.0					
4-Isopropyltoluene	22.1		μg/kg wet		20.0		110 85	70-130		
Methyl tert-butyl ether	17.1		μg/kg wet				96	70-130		
4-Methyl-2-pentanone (MIBK)	19.2		μg/kg wet		20.0			70-130		
Methylene chloride	15.6		μg/kg wet		20.0		78 405	70-130		
Naphthalene	21.0		μg/kg wet		20.0		105	70-130		
n-Propylbenzene	22.4		μg/kg wet		20.0		112	70-130		
Styrene	20.2		μg/kg wet		20.0		101	70-130		
1,1,1,2-Tetrachloroethane	22.4		μg/kg wet		20.0		112	70-130		
1,1,2,2-Tetrachloroethane	22.9		μg/kg wet		20.0		114	70-130		
Tetrachloroethene	18.5		μg/kg wet		20.0		93	70-130		
Toluene	18.8		μg/kg wet		20.0		94	70-130		
1,2,3-Trichlorobenzene	22.2		μg/kg wet		20.0		111	70-130		
1,2,4-Trichlorobenzene	21.3		μg/kg wet		20.0		106	70-130		
1,3,5-Trichlorobenzene	20.8		μg/kg wet		20.0		104	70-130		
1,1,1-Trichloroethane	20.0		μg/kg wet		20.0		100	70-130		
1,1,2-Trichloroethane	19.5		μg/kg wet		20.0		98	70-130		
Trichloroethene	18.5		μg/kg wet		20.0		92	70-130		
Trichlorofluoromethane (Freon 11)	17.1		μg/kg wet		20.0		85	70-130		
1,2,3-Trichloropropane	20.4		μg/kg wet		20.0		102	70-130		
1,2,4-Trimethylbenzene	22.5		μg/kg wet		20.0		113	70-130		
1,3,5-Trimethylbenzene	22.5		μg/kg wet		20.0		113	70-130		
Vinyl chloride	15.5		μg/kg wet		20.0		78	70-130		
m,p-Xylene	44.4		μg/kg wet		40.0		111	70-130		
o-Xylene	22.3		μg/kg wet		20.0		112	70-130		
Tetrahydrofuran	18.1		μg/kg wet		20.0		90	70-130		
Ethyl ether	17.9		μg/kg wet		20.0		89	70-130		
Tert-amyl methyl ether	19.8		μg/kg wet		20.0		99	70-130		
Ethyl tert-butyl ether	18.9		μg/kg wet		20.0		95	70-130		
Di-isopropyl ether	17.5		μg/kg wet		20.0		87	70-130		

nalyte(s)	Result	Flag Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1121119 - SW846 5030 Soil (high level)									
LCS (1121119-BS1)				Pre	epared & Ar	nalyzed: 13-	Oct-11		
Tert-Butanol / butyl alcohol	186	μg/kg wet		200		93	70-130		
1,4-Dioxane	189	μg/kg wet		200		94	70-130		
trans-1,4-Dichloro-2-butene	22.4	μg/kg wet		20.0		112	70-130		
Ethanol	393	μg/kg wet		400		98	70-130		
Surrogate: 4-Bromofluorobenzene	29.2	μg/kg wet		30.0		98	70-130		
Surrogate: Toluene-d8	29.0	μg/kg wet		30.0		97	70-130		
Surrogate: 1,2-Dichloroethane-d4	26.5	μg/kg wet		30.0		88	70-130		
Surrogate: Dibromofluoromethane	29.4	μg/kg wet		30.0		98	70-130		
LCS Dup (1121119-BSD1)				Pre	epared & Ar	nalyzed: 13-	-Oct-11		
1,1,2-Trichlorotrifluoroethane (Freon 113)	17.6	μg/kg wet		20.0	-	88	70-130	3	25
Acetone	18.5	μg/kg wet		20.0		92	70-130	0.3	50
Acrylonitrile	17.8	μg/kg wet		20.0		89	70-130	0.6	25
Benzene	19.8	μg/kg wet		20.0		99	70-130	3	25
Bromobenzene	20.8	μg/kg wet		20.0		104	70-130	2	25
Bromochloromethane	17.3	μg/kg wet		20.0		87	70-130	0.6	25
Bromodichloromethane	20.8	μg/kg wet		20.0		104	70-130	1	25
Bromoform	24.9	μg/kg wet		20.0		124	70-130	2	25
Bromomethane	18.0	μg/kg wet		20.0		90	70-130	4	50
2-Butanone (MEK)	18.2	μg/kg wet		20.0		91	70-130	5	50
n-Butylbenzene	22.2	μg/kg wet		20.0		111	70-130	0.6	25
sec-Butylbenzene	21.5	μg/kg wet		20.0		108	70-130	1	25
tert-Butylbenzene	21.9	μg/kg wet		20.0		110	70-130	0.7	25
Carbon disulfide	21.9	μg/kg wet		20.0		109	70-130	3	25
Carbon tetrachloride	20.3	μg/kg wet		20.0		102	70-130	3	25
Chlorobenzene	20.1	μg/kg wet		20.0		101	70-130	0.7	25
Chloroethane	18.5	μg/kg wet		20.0		92	70-130	4	50
Chloroform	18.6	μg/kg wet		20.0		93	70-130	0.9	25
Chloromethane	20.6	μg/kg wet		20.0		103	70-130	5	25
2-Chlorotoluene	20.3	μg/kg wet		20.0		101	70-130	0.7	25
4-Chlorotoluene	20.9	μg/kg wet		20.0		105	70-130	0.7	25
1,2-Dibromo-3-chloropropane	23.0	μg/kg wet		20.0		115	70-130	4	25
Dibromochloromethane	22.6	μg/kg wet		20.0		113	70-130	0.6	50
1,2-Dibromoethane (EDB)	20.0	μg/kg wet		20.0		100	70-130	0.6	25
Dibromomethane	20.0	μg/kg wet		20.0		100	70-130	3	25
1,2-Dichlorobenzene	21.2	μg/kg wet		20.0		106	70-130	0.3	25
1,3-Dichlorobenzene	20.5	μg/kg wet		20.0		102	70-130	1	25
1,4-Dichlorobenzene	20.4	μg/kg wet		20.0		102	70-130	0.2	25
Dichlorodifluoromethane (Freon12)	18.7	μg/kg wet		20.0		94	70-130	6	50
1,1-Dichloroethane	17.3	μg/kg wet		20.0		87	70-130	3	25
1,2-Dichloroethane	17.6	μg/kg wet		20.0		88	70-130	2	25
1,1-Dichloroethene	18.3	μg/kg wet		20.0		91	70-130	4	25
cis-1,2-Dichloroethene	17.1	μg/kg wet		20.0		85	70-130	2	25
trans-1,2-Dichloroethene	17.9	μg/kg wet		20.0		90	70-130	5	25
1,2-Dichloropropane	20.4	μg/kg wet		20.0		102	70-130	2	25
1,3-Dichloropropane	19.3	μg/kg wet		20.0		96	70-130	1	25
2,2-Dichloropropane	21.9	μg/kg wet		20.0		109	70-130	1	25
1,1-Dichloropropene	19.1	μg/kg wet		20.0		95	70-130	3	25
cis-1,3-Dichloropropene	21.1	μg/kg wet		20.0		105	70-130	0.4	25
trans-1,3-Dichloropropene	22.6	μg/kg wet		20.0		113	70-130	8.0	25
Ethylbenzene	21.3	μg/kg wet		20.0		107	70-130	0.7	25
Hexachlorobutadiene	19.8	μg/kg wet		20.0		99	70-130	6	50

.nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
atch 1121119 - SW846 5030 Soil (high level)										
LCS Dup (1121119-BSD1)					Pre	epared & Ar	nalyzed: 13	-Oct-11		
2-Hexanone (MBK)	20.3		μg/kg wet		20.0		101	70-130	1	25
Isopropylbenzene	20.6		μg/kg wet		20.0		103	70-130	0.6	25
4-Isopropyltoluene	22.0		μg/kg wet		20.0		110	70-130	0.4	25
Methyl tert-butyl ether	17.3		μg/kg wet		20.0		87	70-130	1	25
4-Methyl-2-pentanone (MIBK)	20.4		μg/kg wet		20.0		102	70-130	6	50
Methylene chloride	16.4		μg/kg wet		20.0		82	70-130	5	25
Naphthalene	20.2		μg/kg wet		20.0		101	70-130	4	25
n-Propylbenzene	22.6		μg/kg wet		20.0		113	70-130	0.6	25
Styrene	19.9		μg/kg wet		20.0		100	70-130	1	25
1,1,2-Tetrachloroethane	21.9		μg/kg wet		20.0		110	70-130	2	25
1,1,2,2-Tetrachloroethane	22.4		μg/kg wet		20.0		112	70-130	2	25
Tetrachloroethene	19.0		μg/kg wet		20.0		95	70-130	3	25
Toluene	19.5		μg/kg wet		20.0		98	70-130	4	25
1,2,3-Trichlorobenzene	21.0		μg/kg wet		20.0		105	70-130	6	25
1,2,4-Trichlorobenzene	20.4		μg/kg wet		20.0		102	70-130	4	25
1,3,5-Trichlorobenzene	20.2		μg/kg wet		20.0		101	70-130	3	25
1,1,1-Trichloroethane	20.4		μg/kg wet		20.0		102	70-130	2	25
1,1,2-Trichloroethane	20.0		μg/kg wet		20.0		100	70-130	3	25
Trichloroethene	18.9		μg/kg wet		20.0		95	70-130	2	25
Trichlorofluoromethane (Freon 11)	17.8		μg/kg wet		20.0		89	70-130	4	50
1,2,3-Trichloropropane	19.8		μg/kg wet		20.0		99	70-130	3	25
1,2,4-Trimethylbenzene	22.5		μg/kg wet		20.0		112	70-130	0.04	25
1,3,5-Trimethylbenzene	22.4		μg/kg wet		20.0		112	70-130	0.6	25
Vinyl chloride	16.6		μg/kg wet		20.0		83	70-130	6	25
m,p-Xylene	44.8		μg/kg wet		40.0		112	70-130	0.8	25
o-Xylene	22.4		μg/kg wet		20.0		112	70-130	0.7	25
Tetrahydrofuran	18.9		μg/kg wet		20.0		94	70-130	4	25
Ethyl ether	17.8		μg/kg wet		20.0		89	70-130	0.3	50
Tert-amyl methyl ether	19.8		μg/kg wet		20.0		99	70-130	0.2	25
Ethyl tert-butyl ether	19.1		μg/kg wet		20.0		95	70-130	0.8	25
Di-isopropyl ether	17.4		μg/kg wet		20.0		87	70-130	0.3	25
Tert-Butanol / butyl alcohol	186		μg/kg wet		200		93	70-130	0.3	25
1,4-Dioxane	187		μg/kg wet		200		93	70-130	1	25
trans-1,4-Dichloro-2-butene	22.4		μg/kg wet		20.0		112	70-130	0.3	25
Ethanol	409		μg/kg wet		400		102	70-130	4	30
Surrogate: 4-Bromofluorobenzene	28.9		μg/kg wet		30.0		96	70-130		
Surrogate: Toluene-d8	29.4		μg/kg wet		30.0		98	70-130		
Surrogate: 1,2-Dichloroethane-d4	26.8		μg/kg wet		30.0		89	70-130		
Surrogate: Dibromofluoromethane	29.5		μg/kg wet		30.0		98	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
ntch 1121369 - SW846 3545A										
Blank (1121369-BLK1)					Pre	epared & Ar	nalyzed: 17-	Oct-11		
C9-C18 Aliphatic Hydrocarbons	< 5.00		mg/kg wet	5.00			-			
C19-C36 Aliphatic Hydrocarbons	< 5.00		mg/kg wet	5.00						
C11-C22 Aromatic Hydrocarbons	< 5.00		mg/kg wet	5.00						
Unadjusted C11-C22 Aromatic	< 5.00		mg/kg wet	5.00						
Hydrocarbons			3 3 3							
Total Petroleum Hydrocarbons	< 5.00		mg/kg wet	5.00						
Unadjusted Total Petroleum Hydrocarbons	< 5.00		mg/kg wet	5.00						
Naphthalene	< 0.166		mg/kg wet	0.166						
2-Methylnaphthalene	< 0.166		mg/kg wet	0.166						
Acenaphthylene	< 0.166		mg/kg wet	0.166						
Acenaphthene	< 0.166		mg/kg wet	0.166						
Fluorene	< 0.166		mg/kg wet	0.166						
Phenanthrene	< 0.166		mg/kg wet	0.166						
Anthracene	< 0.166		mg/kg wet	0.166						
Fluoranthene	< 0.166		mg/kg wet	0.166						
Pyrene	< 0.166		mg/kg wet	0.166						
Benzo (a) anthracene	< 0.166		mg/kg wet	0.166						
Chrysene	< 0.166		mg/kg wet	0.166						
Benzo (b) fluoranthene	< 0.166		mg/kg wet	0.166						
Benzo (k) fluoranthene	< 0.166		mg/kg wet	0.166						
Benzo (a) pyrene	< 0.166		mg/kg wet	0.166						
Indeno (1,2,3-cd) pyrene	< 0.166		mg/kg wet	0.166						
Dibenzo (a,h) anthracene	< 0.166		mg/kg wet	0.166						
Benzo (g,h,i) perylene	< 0.166		mg/kg wet	0.166						
n-Nonane (C9)	< 0.166		mg/kg wet	0.166						
n-Decane	< 0.166		mg/kg wet	0.166						
n-Dodecane	< 0.166									
			mg/kg wet	0.166						
n-Tetradecane	< 0.166		mg/kg wet	0.166						
n-Hexadecane	< 0.166		mg/kg wet	0.166						
n-Octadecane	< 0.166		mg/kg wet	0.166						
n-Nonadecane	< 0.166		mg/kg wet	0.166						
n-Eicosane	< 0.166		mg/kg wet	0.166						
n-Docosane	< 0.166		mg/kg wet	0.166						
n-Tetracosane	< 0.166		mg/kg wet	0.166						
n-Hexacosane	< 0.166		mg/kg wet	0.166						
n-Octacosane	< 0.166		mg/kg wet	0.166						
n-Triacontane	< 0.166		mg/kg wet	0.166						
n-Hexatriacontane	< 0.166		mg/kg wet	0.166						
Naphthalene (aliphatic fraction)	0.00		mg/kg wet							
2-Methylnaphthalene (aliphatic fraction)	0.00		mg/kg wet							
Surrogate: 1-Chlorooctadecane	2.81		mg/kg wet		3.33		84	40-140		
Surrogate: Ortho-Terphenyl	1.45		mg/kg wet		3.33		43	40-140		
Surrogate: 2-Fluorobiphenyl	1.24		mg/kg wet		2.67		46	40-140		
LCS (1121369-BS1)						epared & Ar	nalyzed: 17-			
C9-C18 Aliphatic Hydrocarbons	21.5		mg/kg wet	5.00	40.0		54	40-140		
C19-C36 Aliphatic Hydrocarbons	40.5		mg/kg wet	5.00	53.3		76	40-140		
C11-C22 Aromatic Hydrocarbons	76.7		mg/kg wet	5.00	113		68	40-140		
Naphthalene	4.08		mg/kg wet	0.166	6.67		61	40-140		
2-Methylnaphthalene	4.08 4.32			0.166	6.67		65	40-140		
• •			mg/kg wet				69			
Acenaphthona	4.62		mg/kg wet	0.166	6.67			40-140		
Acenaphthene Fluorene	4.64 5.08		mg/kg wet mg/kg wet	0.166 0.166	6.67 6.67		70 76	40-140 40-140		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1121369 - SW846 3545A										
LCS (1121369-BS1)					Pre	epared & A	nalyzed: 17-	Oct-11		
Phenanthrene	5.09		mg/kg wet	0.166	6.67		76	40-140		
Anthracene	4.90		mg/kg wet	0.166	6.67		73	40-140		
Fluoranthene	5.14		mg/kg wet	0.166	6.67		77	40-140		
Pyrene	5.13		mg/kg wet	0.166	6.67		77	40-140		
Benzo (a) anthracene	5.17		mg/kg wet	0.166	6.67		78	40-140		
Chrysene	5.14		mg/kg wet	0.166	6.67		77	40-140		
Benzo (b) fluoranthene	5.31		mg/kg wet	0.166	6.67		80	40-140		
Benzo (k) fluoranthene	4.71		mg/kg wet	0.166	6.67		71	40-140		
Benzo (a) pyrene	4.65		mg/kg wet	0.166	6.67		70	40-140		
Indeno (1,2,3-cd) pyrene	5.00		mg/kg wet	0.166	6.67		75	40-140		
Dibenzo (a,h) anthracene	4.41		mg/kg wet	0.166	6.67		66	40-140		
Benzo (g,h,i) perylene	4.37		mg/kg wet	0.166	6.67		66	40-140		
n-Nonane (C9)	2.06		mg/kg wet	0.166	6.67		31	30-140		
n-Decane	2.80		mg/kg wet	0.166	6.67		42	40-140		
n-Dodecane	3.14		mg/kg wet	0.166	6.67		47	40-140		
n-Tetradecane	3.80		mg/kg wet	0.166	6.67		57	40-140		
n-Hexadecane	4.29		mg/kg wet	0.166	6.67		64	40-140		
n-Octadecane	4.53		mg/kg wet	0.166	6.67		68	40-140		
n-Nonadecane	4.60		mg/kg wet	0.166	6.67		69	40-140		
n-Eicosane	4.68		mg/kg wet	0.166	6.67		70	40-140		
n-Docosane	4.78		mg/kg wet	0.166	6.67		72	40-140		
n-Tetracosane	4.79		mg/kg wet	0.166	6.67		72	40-140		
n-Hexacosane	4.87		mg/kg wet	0.166	6.67		73	40-140		
n-Octacosane	4.97		mg/kg wet	0.166	6.67		75	40-140		
n-Triacontane	4.86		mg/kg wet	0.166	6.67		73	40-140		
n-Hexatriacontane	4.50		mg/kg wet	0.166	6.67		67	40-140		
Naphthalene (aliphatic fraction)	0.0000667		mg/kg wet		6.67		0.0001	0-200		
2-Methylnaphthalene (aliphatic fraction)	0.0000667		mg/kg wet		6.67		0.0001	0-200		
Surrogate: 1-Chlorooctadecane	2.23		mg/kg wet		3.33		67	40-140		
Surrogate: Ortho-Terphenyl	2.65		mg/kg wet		3.33		80	40-140		
Surrogate: 2-Fluorobiphenyl	1.98		mg/kg wet		2.67		74	40-140		
Naphthalene Breakthrough	0.00		%					0-5		
2-Methylnaphthalene Breakthrough	0.00		%					0-5		
LCS (1121369-BS2)					Pre	epared & A	nalyzed: 17-	Oct-11		
C9-C18 Aliphatic Hydrocarbons	18.9		mg/kg wet	5.00	40.0		47	40-140		
C19-C36 Aliphatic Hydrocarbons	29.8		mg/kg wet	5.00	53.3		56	40-140		
C11-C22 Aromatic Hydrocarbons	81.3		mg/kg wet	5.00	113		72	40-140		
Naphthalene	3.76		mg/kg wet	0.166	6.67		56	40-140		
2-Methylnaphthalene	4.06		mg/kg wet	0.166	6.67		61	40-140		
Acenaphthylene	4.52		mg/kg wet	0.166	6.67		68	40-140		
Acenaphthene	4.73		mg/kg wet	0.166	6.67		71	40-140		
Fluorene	4.88		mg/kg wet	0.166	6.67		73	40-140		
Phenanthrene	5.15		mg/kg wet	0.166	6.67		77	40-140		
Anthracene	5.22		mg/kg wet	0.166	6.67		78	40-140		
Fluoranthene	5.19		mg/kg wet	0.166	6.67		78	40-140		
Pyrene	5.13		mg/kg wet	0.166	6.67		77	40-140		
Benzo (a) anthracene	5.22		mg/kg wet	0.166	6.67		78	40-140		
Chrysene	4.97		mg/kg wet	0.166	6.67		75	40-140		
Danne (h) fluaranthana	5.17		mg/kg wet	0.166	6.67		77	40-140		
Benzo (b) fluoranthene										
Benzo (k) fluoranthene	4.48		mg/kg wet	0.166	6.67		67	40-140		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1121369 - SW846 3545A										
LCS (1121369-BS2)					Pre	epared & A	nalyzed: 17-	-Oct-11		
Indeno (1,2,3-cd) pyrene	4.83		mg/kg wet	0.166	6.67		72	40-140		
Dibenzo (a,h) anthracene	4.20		mg/kg wet	0.166	6.67		63	40-140		
Benzo (g,h,i) perylene	4.34		mg/kg wet	0.166	6.67		65	40-140		
n-Nonane (C9)	2.23		mg/kg wet	0.166	6.67		33	30-140		
n-Decane	2.71		mg/kg wet	0.166	6.67		41	40-140		
n-Dodecane	2.84		mg/kg wet	0.166	6.67		43	40-140		
n-Tetradecane	2.89		mg/kg wet	0.166	6.67		43	40-140		
n-Hexadecane	3.13		mg/kg wet	0.166	6.67		47	40-140		
n-Octadecane	3.23		mg/kg wet	0.166	6.67		48	40-140		
n-Nonadecane	3.27		mg/kg wet	0.166	6.67		49	40-140		
n-Eicosane	3.35		mg/kg wet	0.166	6.67		50	40-140		
n-Docosane	3.47		mg/kg wet	0.166	6.67		52	40-140		
n-Tetracosane	3.48		mg/kg wet	0.166	6.67		52	40-140		
n-Hexacosane	3.49		mg/kg wet	0.166	6.67		52	40-140		
n-Octacosane	3.43		mg/kg wet	0.166	6.67		54	40-140		
n-Triacontane	3.53		mg/kg wet	0.166	6.67		53	40-140		
n-Hexatriacontane	3.36		mg/kg wet	0.166	6.67		50	40-140		
	0.00		mg/kg wet	0.100	6.67		30	0-200		
Naphthalene (aliphatic fraction)										
2-Methylnaphthalene (aliphatic fraction)	0.00		mg/kg wet		6.67			0-200		
Surrogate: 1-Chlorooctadecane	1.57		mg/kg wet		3.33		47	40-140		
Surrogate: Ortho-Terphenyl	2.60		mg/kg wet		3.33		78	40-140		
Surrogate: 2-Fluorobiphenyl	1.94		mg/kg wet		2.67		73	40-140		
Naphthalene Breakthrough	0.00		%					0-5		
2-Methylnaphthalene Breakthrough	0.00		%					0-5		
LCS Dup (1121369-BSD1)					Pre	epared & A	nalyzed: 17-	-Oct-11		
C9-C18 Aliphatic Hydrocarbons	17.1		mg/kg wet	5.00	40.0		43	40-140	22	25
C19-C36 Aliphatic Hydrocarbons	32.6		mg/kg wet	5.00	53.3		61	40-140	22	25
C11-C22 Aromatic Hydrocarbons	64.0		mg/kg wet	5.00	113		56	40-140	18	25
Naphthalene	2.67	QR2	mg/kg wet	0.166	6.67		40	40-140	42	25
2-Methylnaphthalene	2.86	QR2	mg/kg wet	0.166	6.67		43	40-140	41	25
Acenaphthylene	3.16	QR2	mg/kg wet	0.166	6.67		47	40-140	38	25
Acenaphthene	3.40	QR2	mg/kg wet	0.166	6.67		51	40-140	31	25
Fluorene	3.56	QR2	mg/kg wet	0.166	6.67		53	40-140	35	25
Phenanthrene	3.74	QR2	mg/kg wet	0.166	6.67		56	40-140	31	25
Anthracene	3.69	QR2	mg/kg wet	0.166	6.67		55	40-140	28	25
Fluoranthene	3.82	QR2	mg/kg wet	0.166	6.67		57	40-140	30	25
Pyrene	3.90	QR2	mg/kg wet	0.166	6.67		58	40-140	27	25
Benzo (a) anthracene	3.62	QR2	mg/kg wet	0.166	6.67		54	40-140	35	25
Chrysene	3.66	QR2	mg/kg wet	0.166	6.67		54 55	40-140	34	25 25
•	3.48	QR2			6.67		55 52		42	25 25
Benzo (b) fluoranthene Benzo (k) fluoranthene		QR2	mg/kg wet mg/kg wet	0.166	6.67		52 54	40-140		25 25
, ,	3.60	QR2		0.166				40-140	27	
Benzo (a) pyrene	3.30		mg/kg wet	0.166	6.67		50 50	40-140	34	25
Indeno (1,2,3-cd) pyrene	3.31	QR2	mg/kg wet	0.166	6.67		50	40-140	41	25
Dibenzo (a,h) anthracene	3.02	QR2	mg/kg wet	0.166	6.67		45	40-140	37	25
Benzo (g,h,i) perylene	3.07	QR2	mg/kg wet	0.166	6.67		46	40-140	35	25
n-Nonane (C9)	2.02		mg/kg wet	0.166	6.67		30	30-140	2	25
n-Decane	2.67		mg/kg wet	0.166	6.67		40	40-140	5	25
n-Dodecane	2.79		mg/kg wet	0.166	6.67		42	40-140	12	25
n-Tetradecane	3.22		mg/kg wet	0.166	6.67		48	40-140	17	25
n-Hexadecane	3.49		mg/kg wet	0.166	6.67		52	40-140	21	25
n-Octadecane	3.61		mg/kg wet	0.166	6.67		54	40-140	23	25

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1121369 - SW846 3545A										
LCS Dup (1121369-BSD1)					Pre	epared & Ai	nalyzed: 17	-Oct-11		
n-Nonadecane	3.67		mg/kg wet	0.166	6.67		55	40-140	23	25
n-Eicosane	3.75		mg/kg wet	0.166	6.67		56	40-140	22	25
n-Docosane	3.88		mg/kg wet	0.166	6.67		58	40-140	21	25
n-Tetracosane	3.88		mg/kg wet	0.166	6.67		58	40-140	21	25
n-Hexacosane	3.89		mg/kg wet	0.166	6.67		58	40-140	22	25
n-Octacosane	4.00		mg/kg wet	0.166	6.67		60	40-140	22	25
n-Triacontane	3.90		mg/kg wet	0.166	6.67		59	40-140	22	25
n-Hexatriacontane	3.67		mg/kg wet	0.166	6.67		55	40-140	20	25
Naphthalene (aliphatic fraction)	0.00		mg/kg wet		6.67			0-200		200
2-Methylnaphthalene (aliphatic fraction)	0.00		mg/kg wet		6.67			0-200		200
Surrogate: 1-Chlorooctadecane	1.76		mg/kg wet		3.33		53	40-140		
Surrogate: Ortho-Terphenyl	1.85		mg/kg wet		3.33		55	40-140		
Surrogate: 2-Fluorobiphenyl	1.52		mg/kg wet		2.67		57	40-140		
Naphthalene Breakthrough	0.00		%					0-5		
2-Methylnaphthalene Breakthrough	0.00		%					0-5		

Extractable Petroleum Hydrocarbons - CCV Evaluation Report

	Average		•		
nalyte(s)	RF	CCRF	% D	Limit	
atch S109575					
Calibration Check (S109575-CCV1)					
C9-C18 Aliphatic Hydrocarbons	1.077597E+08	9.478395E+07	-5.5	25	
C19-C36 Aliphatic Hydrocarbons	1.129792E+08	9.044693E+07	-3.2	25	
C11-C22 Aromatic Hydrocarbons	24.56243	21.28768	-2.9	25	
Naphthalene	8.003419	6.873589	-14.1	25	
2-Methylnaphthalene	5.351536	4.77073	-10.9	25	
Acenaphthylene	7.765333	7.184569	-7.5	25	
Acenaphthene	4.869087	4.474024	-8.1	25	
Fluorene	5.655684	5.433038	-3.9	25	
Phenanthrene	7.874853	7.568513	-3.9	25	
Anthracene	6.981425	6.57033	-5.9	25	
Fluoranthene	8.318135	8.249431	-0.8	25	
Pyrene	8.513716	8.467597	-0.5	25	
Benzo (a) anthracene	7.3365	7.855025	7.1	25	
Chrysene	7.586051	7.668869	1.1	25	
Benzo (b) fluoranthene	6.69292	7.420158	10.9	25	
Benzo (k) fluoranthene	7.424765	7.158339	-3.6	25	
Benzo (a) pyrene	6.284834	6.466185	2.9	25	
Indeno (1,2,3-cd) pyrene	6.995628	7.197114	2.9	25	
Dibenzo (a,h) anthracene	6.210598	6.485676	-5.3	25	
Benzo (g,h,i) perylene	6.4595	6.256724	-3.1	25	
n-Decane	102864.8	90124.4	-12.4	25	
n-Dodecane	103161.7	90602.16	-12.2	25	
n-Hexadecane	100979	90625.25	-10.3	25	
n-Octadecane	98980.42	89414.09	-9.7	25	
n-Nonane (C9)	103134.8	89402.19	-13.3	30	
n-Tetradecane	101806.9	90700.18	-10.9	25	
n-Eicosane	95375.55	86876.61	-8.9	25	
n-Docosane	93276.75	85897.03	-7.9	25	
n-Nonadecane	97472.38	88339.66	-9.4	25	
n-Octacosane	88486.73	83132.21	-6.1	25	
n-Tetracosane	91785.2	83872.42	-8.6	25	
n-Hexacosane	91457.1	84060.24	-8.1	25	
n-Triacontane	90872.17	83251.69	-8.4	25	
n-Hexatriacontane	88235.92	81846.08	-7.2	25	
Calibration Check (S109575-CCV2)					
C9-C18 Aliphatic Hydrocarbons	1.077597E+08	9.058545E+07	-10.0	25	
C19-C36 Aliphatic Hydrocarbons	1.129792E+08	8.311631E+07	-12.0	25	
C11-C22 Aromatic Hydrocarbons	24.56243	22.88307	4.7	25	
Naphthalene	8.003419	7.880472	-1.5	25	
2-Methylnaphthalene	5.351536	5.371291	0.4	25	
Acenaphthylene	7.765333	7.97122	2.7	25	
Acenaphthene	4.869087	4.896885	0.6	25	
Fluorene	5.655684	5.97228	5.6	25	
Phenanthrene	7.874853	8.336389	5.9	25	
Anthracene	6.981425	8.186503	17.3	25	
Fluoranthene	8.318135	8.921206	7.3	25	
Pyrene	8.513716	9.08395	6.7	25	
Benzo (a) anthracene	7.3365	7.952091	8.4	25	
Chrysene	7.586051	7.968923	5.0	25	
Benzo (b) fluoranthene	6.69292	7.096345	6.0	25	
Benzo (k) fluoranthene	7.424765	7.950519	7.1	25	

Extractable Petroleum Hydrocarbons - CCV Evaluation Report

Analyte(s)	Average RF	CCRF	% D	Limit	
Batch S109575					
Calibration Check (S109575-CCV2)					
Benzo (a) pyrene	6.284834	6.673901	6.2	25	
Indeno (1,2,3-cd) pyrene	6.995628	7.34798	5.0	25	
Dibenzo (a,h) anthracene	6.210598	6.647945	-3.1	25	
Benzo (g,h,i) perylene	6.4595	6.664194	3.2	25	
n-Decane	102864.8	89599.84	-12.9	25	
n-Dodecane	103161.7	89686.31	-13.1	25	
n-Hexadecane	100979	88081.45	-12.8	25	
n-Octadecane	98980.42	84049.35	-15.1	25	
n-Nonane (C9)	103134.8	89048.6	-13.7	30	
n-Tetradecane	101806.9	89536.43	-12.1	25	
n-Eicosane	95375.55	80233.74	-15.9	25	
n-Nonadecane	97472.38	82293.67	-15.6	25	
n-Docosane	93276.75	78661.37	-15.7	25	
n-Tetracosane	91785.2	76713.69	-16.4	25	
n-Octacosane	88486.73	76116.6	-14.0	25	
n-Hexacosane	91457.1	76869.06	-16.0	25	
n-Triacontane	90872.17	75994.15	-16.4	25	
n-Hexatriacontane	88235.92	74180.14	-15.9	25	

Notes and Definitions

QR2 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the

QC batch were accepted based on percent recoveries and completeness of QC data.

R05 Elevated Reporting Limits due to the presence of high levels of non-target analytes.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

A Matrix Spike and Matrix Spike Duplicate (MS/MSD) for MADEP EPH CAM may not have been analyzed with the samples in this work order. According to the method these spikes are performed only when requested by the client. If requested the spike recoveries are included in the batch OC data.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Kimberly Wisk

18
(J)
7
325
2

CTRUM ANALYTICAL, INC-	')
N.	ر الح
Ę	
EC.	
£	
NO.	

Report To: 10 5 72/18 5 my wangard

Invoice To:

HANIBAL TECHNOLOGY

HAIN OF CUSTODY I

			<u> </u>	
. Min 71-hour notification needed for michae	 All TATs subject to laboratory approval. 	☐ Rush TAT - Date Needed:	Standard TAT - 7 to 10 business days	Special Handling:

Page of Site Name: 05-216613 Project No .: Do Conway Samples disposed of after 60 days unless otherwise instructed.

		Formania T		(1)								
		\$.03	02	(p.cons	Lab Id:		X1=	O=Oil SW=	8= NaHSi	1=Na ₂ S2O ₃	Project Mgr. Ka	Tolonhono #:
		F-5-6(8")	F-S-6 [4]	F_N-6 (8)	Sample Id:	G=Grab C=Composite	X2=	O=Oil SW=Surface Water SO=Soil SL=Sludge A=Air	8= NaHSO ₄ 9= Deionized Water	$2O_3$ 2=HCl 3=H ₂ SO ₄	5	100x 21/10 100
xe () :		-		11001	Date:	Composite	X3=_	=Soil SL=Sludge	Vater 10=		tex	4
7.2					Time:			A=Air		5=NaOH 6	P.O. No.:	
işe e e		9 20	05 9	08 9	Type	x			11=	=Ascorbic A		
		\(\frac{1}{2}\)	7	311	# of A	Amber Clear Clastic	Glass	Containers	•	4=HNO ₃ 5=NaOH 6=Ascorbic Acid 7=CH ₃ OH	RQN: 0003	10 20 20 20 20 20 20 20 20 20 20 20 20 20
	4			<u>-</u>	VO(S £P		60)	3	124	List		Lo
						1)		Analyses:		List preservative code below:	Sampler(s): Kan	Location: Somer M
12	6	,		ク	St		П	MA			e 778	rude
RODING DIHZOVO	1 CH, OH VOR	the helper.	of other	らない ナチロ	Other State-specific reporting standards:	□ NY ASP A* □ NY ASP B* □ NJ Reduced* □ NJ Full* □ TIEP II* □ TIEP V*	QA/QC Reporting Level ☐ Standard ☐ No QC ☐ DQA*	MA DEP MCP CAM Report: Yes ☐ No☐ CT DPH RCP Report: Yes ☐ No ☐	* additional charges may apply	QA/QC Reporting Notes:	Sler	State: MA
3												

Relinquished by:

Date:

1205 Time:

() Temp°C

☐ EDD Format

thact +

- E-mail to XGTXTEY CCSCANAULT

☐ Ambient ☐ Iced ☐ Refrigerated ☐ Fridge temp ___ °C ☐ Freezer temp ___ °C

Report Date: 22-Nov-11 10:06

Laboratory Report

Environmental Compliance Services 10 State Street Woburn, MA 01801 Attn: Kathy Baxter

Project: Conway Park - Somerville, MA

Project #: 05-206613

Laboratory IDClient Sample IDMatrixDate SampledDate ReceivedSB39147-01F-N-11(8')Soil03-Nov-11 07:3010-Nov-11 17:40

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Vicole Leja

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please note that this report contains 12 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: Spe	ectrum Analytical, Inc.		Project #: 05-206	613	
Proje	ct Location: Conv	way Park - Somerville, N	ЛА	RTN:		
This	form provides cer	tifications for the follow	ving data set:	B39147-01		
Matr	ices: Soil					
CAM	Protocol					
/	260 VOC AM II A	7470/7471 Hg CAM III B	MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A
	270 SVOC AM II B	7010 Metals CAM III C	MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B
	010 Metals AM III A	6020 Metals CAM III D	8082 PCB CAM V A	9012 Total Cyanide/PAC CAM VI A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B
		Affirmative responses	to questions A through I	are required for "Presu	mptive Certainty" status	
A	_		consistent with those described or laboratory, and pr			✓ Yes No
В	Were the analytic protocol(s) follow	* *	ociated QC requirements	specified in the selected (CAM	✓ Yes No
С	-		nnalytical response actions performance standard no	-	CAM	✓ Yes No
D			Il the reporting requirements for the Acquisition and	-		✓ Yes No
Е			Vas each method conducte ne complete analyte list re	_	lification(s)?	Yes No Yes No
F			nd performance standard r ding all "No" responses to		ed and	✓ Yes No
		Responses to quest	ions G, H and I below ar	e required for "Presump	tive Certainty" status	!
G	Were the reporting	ng limits at or below all	CAM reporting limits spe	cified in the selected CAN	M protocol(s)?	Yes ✔ No
		t achieve "Presumptive Ce 1 310 CMR 40. 1056 (2)(k)	ertainty" status may not nec and WSC-07-350.	essarily meet the data usabi	lity and representativeness	
Н	Were all QC perf	formance standards spec	ified in the CAM protocol	l(s) achieved?		Yes ✔ No
I	Were results repo	orted for the complete an	alyte list specified in the	selected CAM protocol(s)	?	✓ Yes No
All ne	gative responses are	e addressed in a case narra	tive on the cover page of th	is report.		·
1		• •	ties of perjury that, based up al report is, to the best of my		those responsible for obtaining arate and complete.	ng the
					Nicole Leja Laboratory Director	ja

Date: 11/22/2011

CASE NARRATIVE:

The samples were received 2.0 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of \pm 2.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Additional dilution factors may be required to keep analyte concentration within instrument calibration.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8260C

Calibration:

1111003

Analyte quantified by quadratic equation type calibration.

1,2-Dibromo-3-chloropropane

Bromodichloromethane

Bromoform

Carbon disulfide

cis-1,3-Dichloropropene

Dibromochloromethane

Hexachlorobutadiene

trans-1,3-Dichloropropene

This affected the following samples:

1123865-BLK1

1123865-BS1

1123865-BSD1

F-N-11(8')

S110088-ICV1

S110629-CCV1

Laboratory Control Samples:

1123865 BS/BSD

Vinyl chloride percent recoveries (140/136) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

F-N-11(8')

Samples:

S110629-CCV1

SW846 8260C

Samples:

S110629-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

2-Butanone (MEK) (-25.8%) Acetone (-21.5%)

Dichlorodifluoromethane (Freon12) (-24.5%)

Ethanol (-22.4%)

Tert-Butanol / butyl alcohol (-26.0%)

This affected the following samples:

1123865-BLK1 1123865-BS1 1123865-BSD1 F-N-11(8')

SB39147-01

F-N-11(8')

Elevated Reporting Limits due to the presence of high levels of non-target analytes.

Sample R F-N-11(8 ' SB39147-				Client Pr 05-20			<u>Matrix</u> Soil		ection Date -Nov-11 07		Received 10-Nov-11		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds VOC Extraction	Field extracted		N/A			1 \	/OC Soil Extractio	n 12-Nov-11	12-Nov-11	JLH	1123548	i
Volatile O	rganic Compounds		R05										
Prepared	by method SW846 5030 S	oil (high level)				<u>Init</u>	ial weight:	<u>15.22 g</u>					
76-13-1	1,1,2-Trichlorotrifluoroetha ne (Freon 113)	< 638		μg/kg dry	638	425	500	SW846 8260C	16-Nov-11	16-Nov-11	naa	1123865	i
67-64-1	Acetone	< 6380		μg/kg dry	6380	4790	500	"	"	"	"	"	
107-13-1	Acrylonitrile	< 638		μg/kg dry	638	571	500	"	"	"	"	"	
71-43-2	Benzene	< 638		μg/kg dry	638	335	500	"	"	"	"	"	
108-86-1	Bromobenzene	< 638		μg/kg dry	638	407	500	"	"	"	"	"	
74-97-5	Bromochloromethane	< 638		μg/kg dry	638	209	500	"	"	"	"	"	
75-27-4	Bromodichloromethane	< 638		μg/kg dry	638	241	500	"	"	"	"	"	
75-25-2	Bromoform	< 638		μg/kg dry	638	441	500	"	"	"	"	"	
74-83-9	Bromomethane	< 1280		μg/kg dry	1280	1150	500	"	"	"	"	"	
78-93-3	2-Butanone (MEK)	< 6380		μg/kg dry	6380	5470	500	"	"	"	"	"	
104-51-8	n-Butylbenzene	10,200		μg/kg dry	638	318	500	"	"	"	"	"	
135-98-8	sec-Butylbenzene	7,410		μg/kg dry	638	618	500	"	"	"	"	"	
98-06-6	tert-Butylbenzene	< 638		μg/kg dry	638	461	500	"	"	"	"	"	
75-15-0	Carbon disulfide	< 1280		μg/kg dry	1280	911	500	"	"	"	"	"	
56-23-5	Carbon tetrachloride	< 638		μg/kg dry	638	634	500	"	"	"	"	"	
108-90-7	Chlorobenzene	< 638		μg/kg dry	638	356	500	"	"	"	"	"	
75-00-3	Chloroethane	< 1280		μg/kg dry	1280	903	500	"	"	"	"	"	
67-66-3	Chloroform	< 638		μg/kg dry	638	312	500	"	"	"	"	"	
74-87-3	Chloromethane	< 1280		μg/kg dry	1280	321	500	"	"	"	"	"	
95-49-8	2-Chlorotoluene	< 638		μg/kg dry	638	388	500	"	"	"	"	"	
106-43-4	4-Chlorotoluene	< 638		μg/kg dry	638	571	500	"	"	"	"	"	
96-12-8	1,2-Dibromo-3-chloroprop ane	< 1280		μg/kg dry	1280	1210	500	"	"	"	"	"	
124-48-1	Dibromochloromethane	< 638		μg/kg dry	638	306	500	"	"	"	"	"	
106-93-4	1,2-Dibromoethane (EDB)	< 638		μg/kg dry	638	395	500		"	"	"	"	
74-95-3	Dibromomethane	< 638		μg/kg dry	638	636	500		"	"	"	"	
95-50-1	1,2-Dichlorobenzene	< 638		μg/kg dry	638	513	500	"	u u	"	"	"	
541-73-1	1,3-Dichlorobenzene	< 638		μg/kg dry	638	634	500	"	"	"	"	"	
106-46-7	1,4-Dichlorobenzene	< 638		μg/kg dry	638	430	500	"	u u	"	"	"	
75-71-8	Dichlorodifluoromethane (Freon12)	< 1280		μg/kg dry	1280	1080	500	"	"	п	"	"	
75-34-3	1,1-Dichloroethane	< 638		μg/kg dry	638	582	500	"	u u	"	"	"	
107-06-2	1,2-Dichloroethane	< 638		μg/kg dry	638	356	500	"	"	"	"	"	
75-35-4	1,1-Dichloroethene	< 638		μg/kg dry	638	316	500	"	"	"	"	"	
156-59-2	cis-1,2-Dichloroethene	< 638		μg/kg dry	638	268	500	"	"	"	"	"	
156-60-5	trans-1,2-Dichloroethene	< 638		μg/kg dry	638	529	500	"	"	"	"	"	
78-87-5	1,2-Dichloropropane	< 638		μg/kg dry	638	325	500	"	"	"	"	"	
142-28-9	1,3-Dichloropropane	< 638		μg/kg dry	638	321	500	"	"	"	"	"	
594-20-7	2,2-Dichloropropane	< 638		μg/kg dry	638	257	500	"	"	"	"	"	
563-58-6	1,1-Dichloropropene	< 638		μg/kg dry	638	393	500	"		"	"	"	
10061-01-5	cis-1,3-Dichloropropene	< 638		μg/kg dry	638	347	500	"		"	"	"	
10061-02-6	trans-1,3-Dichloropropene	< 638		μg/kg dry	638	180	500	"		"	"	"	
100-41-4	Ethylbenzene	< 638		μg/kg dry	638	388	500	u u	"	"	"	"	
87-68-3	Hexachlorobutadiene	< 638		μg/kg dry	638	550	500	"		"	"		

Sample Identification

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1123865 - SW846 5030 Soil (high level)										
Blank (1123865-BLK1)					Pro	epared & A	nalyzed: 16	-Nov-11		
1,1,2-Trichlorotrifluoroethane (Freon 113)	< 50.0		μg/kg wet	50.0						
Acetone	< 500		μg/kg wet	500						
Acrylonitrile	< 50.0		μg/kg wet	50.0						
Benzene	< 50.0		μg/kg wet	50.0						
Bromobenzene	< 50.0		μg/kg wet	50.0						
Bromochloromethane	< 50.0		μg/kg wet	50.0						
Bromodichloromethane	< 50.0		μg/kg wet	50.0						
Bromoform	< 50.0		μg/kg wet	50.0						
Bromomethane	< 100		μg/kg wet	100						
2-Butanone (MEK)	< 500		μg/kg wet	500						
n-Butylbenzene	< 50.0		μg/kg wet	50.0						
sec-Butylbenzene	< 50.0		μg/kg wet	50.0						
tert-Butylbenzene	< 50.0		μg/kg wet	50.0						
Carbon disulfide	< 100		μg/kg wet	100						
Carbon tetrachloride	< 50.0		μg/kg wet	50.0						
Chlorobenzene	< 50.0		μg/kg wet	50.0						
Chloroethane	< 100		μg/kg wet	100						
Chloroform	< 50.0		μg/kg wet	50.0						
Chloromethane	< 100		μg/kg wet	100						
2-Chlorotoluene	< 50.0		μg/kg wet	50.0						
4-Chlorotoluene	< 50.0		μg/kg wet	50.0						
1,2-Dibromo-3-chloropropane	< 100		μg/kg wet	100						
Dibromochloromethane	< 50.0		μg/kg wet	50.0						
1,2-Dibromoethane (EDB)	< 50.0		μg/kg wet	50.0						
Dibromomethane	< 50.0		μg/kg wet	50.0						
1,2-Dichlorobenzene	< 50.0		μg/kg wet	50.0						
1,3-Dichlorobenzene	< 50.0		μg/kg wet	50.0						
1,4-Dichlorobenzene	< 50.0		μg/kg wet	50.0						
Dichlorodifluoromethane (Freon12)	< 100		μg/kg wet	100						
1,1-Dichloroethane	< 50.0		μg/kg wet	50.0						
1,2-Dichloroethane	< 50.0		μg/kg wet	50.0						
1,1-Dichloroethene	< 50.0		μg/kg wet	50.0						
cis-1,2-Dichloroethene	< 50.0		μg/kg wet	50.0						
trans-1,2-Dichloroethene	< 50.0		μg/kg wet	50.0						
1,2-Dichloropropane	< 50.0		μg/kg wet	50.0						
1,3-Dichloropropane	< 50.0		μg/kg wet	50.0						
2,2-Dichloropropane	< 50.0		μg/kg wet	50.0						
1,1-Dichloropropene	< 50.0		μg/kg wet	50.0						
cis-1,3-Dichloropropene	< 50.0		μg/kg wet	50.0						
trans-1,3-Dichloropropene	< 50.0		μg/kg wet	50.0						
Ethylbenzene	< 50.0		μg/kg wet	50.0						
Hexachlorobutadiene	< 50.0		μg/kg wet	50.0						
2-Hexanone (MBK)	< 500		μg/kg wet	500						
Isopropylbenzene	< 50.0		μg/kg wet	50.0						
4-Isopropyltoluene	< 50.0		μg/kg wet	50.0						
Methyl tert-butyl ether	< 50.0		μg/kg wet	50.0						
4-Methyl-2-pentanone (MIBK)	< 500		μg/kg wet	500						
Methylene chloride	< 100		μg/kg wet	100						
Naphthalene	< 50.0		μg/kg wet	50.0						
n-Propylbenzene	< 50.0		μg/kg wet	50.0						
Styrene	< 50.0		μg/kg wet	50.0						
1,1,1,2-Tetrachloroethane	< 50.0		μg/kg wet	50.0						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1123865 - SW846 5030 Soil (high level)										
Blank (1123865-BLK1)					Pre	epared & Ar	nalyzed: 16-	Nov-11		
1,1,2,2-Tetrachloroethane	< 50.0		μg/kg wet	50.0						
Tetrachloroethene	< 50.0		μg/kg wet	50.0						
Toluene	< 50.0		μg/kg wet	50.0						
1,2,3-Trichlorobenzene	< 50.0		μg/kg wet	50.0						
1,2,4-Trichlorobenzene	< 50.0		μg/kg wet	50.0						
1,3,5-Trichlorobenzene	< 50.0		μg/kg wet	50.0						
1,1,1-Trichloroethane	< 50.0		μg/kg wet	50.0						
1,1,2-Trichloroethane	< 50.0		μg/kg wet	50.0						
Trichloroethene	< 50.0		μg/kg wet	50.0						
Trichlorofluoromethane (Freon 11)	< 50.0		μg/kg wet	50.0						
1,2,3-Trichloropropane	< 50.0		μg/kg wet	50.0						
1,2,4-Trimethylbenzene	< 50.0		μg/kg wet	50.0						
1,3,5-Trimethylbenzene	< 50.0		μg/kg wet	50.0						
Vinyl chloride	< 50.0		μg/kg wet	50.0						
m,p-Xylene	< 100		μg/kg wet	100						
o-Xylene	< 50.0		μg/kg wet	50.0						
Tetrahydrofuran	< 100		μg/kg wet	100						
Ethyl ether	< 50.0		μg/kg wet	50.0						
Tert-amyl methyl ether	< 50.0		μg/kg wet	50.0						
Ethyl tert-butyl ether	< 50.0		μg/kg wet	50.0						
Di-isopropyl ether	< 50.0		μg/kg wet	50.0						
Tert-Butanol / butyl alcohol	< 500		μg/kg wet	500						
1,4-Dioxane	< 1000		μg/kg wet	1000						
trans-1,4-Dichloro-2-butene	< 250		μg/kg wet	250						
Ethanol	< 20000		μg/kg wet	20000						
Surrogate: 4-Bromofluorobenzene	28.3		μg/kg wet		30.0		94	70-130		
Surrogate: Toluene-d8	30.4		μg/kg wet		30.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	30.9		μg/kg wet		30.0		103	70-130		
Surrogate: Dibromofluoromethane	29.6		μg/kg wet		30.0		99	70-130		
LCS (1123865-BS1)			p33			enared & Ar	nalyzed: 16-			
1,1,2-Trichlorotrifluoroethane (Freon 113)	20.3		μg/kg wet		20.0	5paroa a 7 11	102	70-130		
Acetone	16.4		μg/kg wet		20.0		82	70-130		
Acrylonitrile	18.4		μg/kg wet		20.0		92	70-130		
Benzene	19.6		μg/kg wet μg/kg wet		20.0		98	70-130		
Bromobenzene	20.2		μg/kg wet μg/kg wet		20.0		101	70-130		
Bromochloromethane	19.8		μg/kg wet μg/kg wet		20.0		99	70-130		
Bromodichloromethane	21.5		μg/kg wet μg/kg wet		20.0		108	70-130		
Bromoform	18.4		μg/kg wet μg/kg wet		20.0		92	70-130		
Bromomethane	21.5		μg/kg wet μg/kg wet		20.0		108	70-130		
2-Butanone (MEK)	16.6		μg/kg wet μg/kg wet		20.0		83	70-130		
n-Butylbenzene	24.0		μg/kg wet μg/kg wet		20.0		120	70-130		
sec-Butylbenzene	23.2		μg/kg wet μg/kg wet		20.0		116	70-130		
tert-Butylbenzene	23.5		μg/kg wet μg/kg wet		20.0		118	70-130		
Carbon disulfide	22.5		μg/kg wet μg/kg wet		20.0		112	70-130		
Carbon tetrachloride	21.6		μg/kg wet μg/kg wet		20.0		108	70-130		
Chlorobenzene	19.2		μg/kg wet μg/kg wet		20.0		96	70-130		
Chloroethane	19.2		μg/kg wet μg/kg wet		20.0		98	70-130		
Chloroform	20.5		μg/kg wet μg/kg wet		20.0		103	70-130 70-130		
Chloromethane	20.5				20.0		103	70-130		
2-Chlorotoluene			µg/kg wet		20.0		99	70-130 70-130		
4-Chlorotoluene	19.8 21.1		μg/kg wet μg/kg wet		20.0					
ALL MOTOTOLIANA	24.4		HOVEO WAT		20.0		106	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1123865 - SW846 5030 Soil (high level)					2.4-	- 50 - 57 - 5				
, ,					Dr.	enared & A	nalyzed: 16-	.Nov-11		
LCS (1123865-BS1)	47.4		ua/ka wot			epareu & A				
1,2-Dibromo-3-chloropropane Dibromochloromethane	17.1		μg/kg wet		20.0 20.0		86 104	70-130 70-130		
1,2-Dibromoethane (EDB)	20.7 19.7		μg/kg wet μg/kg wet		20.0		99	70-130		
Dibromomethane	18.6		μg/kg wet μg/kg wet		20.0		99	70-130		
1.2-Dichlorobenzene	20.8		μg/kg wet		20.0		104	70-130		
1,3-Dichlorobenzene	19.5		μg/kg wet μg/kg wet		20.0		98	70-130		
1,4-Dichlorobenzene	19.6		μg/kg wet		20.0		98	70-130		
Dichlorodifluoromethane (Freon12)	19.2		μg/kg wet μg/kg wet		20.0		96	70-130		
1,1-Dichloroethane	19.6		µg/kg wet		20.0		98	70-130		
1,2-Dichloroethane	19.7		μg/kg wet μg/kg wet		20.0		98	70-130		
1.1-Dichloroethene	20.1		µg/kg wet		20.0		100	70-130		
cis-1.2-Dichloroethene	19.4		μg/kg wet μg/kg wet		20.0		97	70-130		
trans-1,2-Dichloroethene	19.6		μg/kg wet		20.0		98	70-130		
1,2-Dichloropropane	20.3		μg/kg wet		20.0		101	70-130		
1,3-Dichloropropane	19.2		μg/kg wet		20.0		96	70-130		
2,2-Dichloropropane	20.5		μg/kg wet		20.0		102	70-130		
1,1-Dichloropropene	20.9		μg/kg wet μg/kg wet		20.0		104	70-130		
cis-1,3-Dichloropropene	21.4		μg/kg wet μg/kg wet		20.0		107	70-130		
trans-1,3-Dichloropropene	20.9		μg/kg wet μg/kg wet		20.0		107	70-130		
Ethylbenzene	22.3		μg/kg wet μg/kg wet		20.0		112	70-130		
Hexachlorobutadiene	23.8		μg/kg wet μg/kg wet		20.0		119	70-130		
2-Hexanone (MBK)	18.3		μg/kg wet		20.0		91	70-130		
Isopropylbenzene	20.5		μg/kg wet		20.0		102	70-130		
4-Isopropyltoluene	23.8		μg/kg wet μg/kg wet		20.0		119	70-130		
Methyl tert-butyl ether	18.9		μg/kg wet		20.0		94	70-130		
4-Methyl-2-pentanone (MIBK)	17.7		μg/kg wet		20.0		88	70-130		
Methylene chloride	18.6		μg/kg wet μg/kg wet		20.0		93	70-130		
Naphthalene	20.0		μg/kg wet		20.0		100	70-130		
n-Propylbenzene	23.4		μg/kg wet μg/kg wet		20.0		117	70-130		
	20.6		μg/kg wet		20.0		103	70-130		
Styrene 1,1,1,2-Tetrachloroethane	21.1				20.0		106	70-130		
1,1,2,1-Tetrachioroethane	18.2		μg/kg wet μg/kg wet		20.0		91	70-130		
Tetrachloroethene	19.5				20.0		97	70-130		
Toluene			μg/kg wet		20.0		100	70-130		
	20.0 22.1		μg/kg wet		20.0		111	70-130		
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	22.1		μg/kg wet		20.0		111	70-130		
	21.2		μg/kg wet		20.0		106	70-130		
1,3,5-Trichlorobenzene 1,1,1-Trichloroethane	21.2		μg/kg wet μg/kg wet		20.0		110	70-130		
1,1,2-Trichloroethane	19.4				20.0		97	70-130		
Trichloroethene			µg/kg wet		20.0		101	70-130		
Trichlorofluoromethane (Freon 11)	20.2 20.9		µg/kg wet		20.0		101	70-130 70-130		
,			µg/kg wet		20.0		90	70-130 70-130		
1,2,3-Trichloropropane	18.0 24.2		µg/kg wet		20.0		90 121	70-130 70-130		
1,2,4-Trimethylbenzene			µg/kg wet		20.0		121	70-130 70-130		
1,3,5-Trimethylbenzene	24.2	QC2	μg/kg wet							
Vinyl chloride	28.1	QUZ	µg/kg wet		20.0		140 111	70-130 70-130		
m,p-Xylene	44.5		µg/kg wet		40.0 20.0		111	70-130 70-130		
o-Xylene	21.9		μg/kg wet		20.0		110	70-130 70-130		
Tetrahydrofuran	19.2		μg/kg wet		20.0		96 94	70-130 70-130		
Ethyl ether	18.7		μg/kg wet		20.0		94	70-130 70-130		
Tert-amyl methyl ether	19.8		μg/kg wet		20.0		99 11 <i>4</i>	70-130 70-130		
Ethyl tert-butyl ether Di-isopropyl ether	22.7 20.3		μg/kg wet μg/kg wet		20.0 20.0		114 102	70-130 70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	Result	1 lag	Omts	KDL	Level	Result	70KLC	Lillius	M D	Lillin
Batch 1123865 - SW846 5030 Soil (high level)					D.			Na. 44		
LCS (1123865-BS1)						epared & Ar	nalyzed: 16			
Tert-Butanol / butyl alcohol	161		μg/kg wet		200		81	70-130		
1,4-Dioxane	193		μg/kg wet		200		96	70-130		
trans-1,4-Dichloro-2-butene	17.7		μg/kg wet		20.0		88	70-130		
Ethanol	344		μg/kg wet		400		86	70-130		
Surrogate: 4-Bromofluorobenzene	29.4		μg/kg wet		30.0		98	70-130		
Surrogate: Toluene-d8	30.7		μg/kg wet		30.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	30.2		μg/kg wet		30.0		100	70-130		
Surrogate: Dibromofluoromethane	33.1		μg/kg wet		30.0		110	70-130		
LCS Dup (1123865-BSD1)					<u>Pre</u>	epared & Ar	nalyzed: 16	-Nov-11		
1,1,2-Trichlorotrifluoroethane (Freon 113)	21.0		μg/kg wet		20.0		105	70-130	3	25
Acetone	16.2		μg/kg wet		20.0		81	70-130	2	50
Acrylonitrile	17.9		μg/kg wet		20.0		89	70-130	3	25
Benzene	19.1		μg/kg wet		20.0		95	70-130	3	25
Bromobenzene	19.9		μg/kg wet		20.0		100	70-130	1	25
Bromochloromethane	18.8		μg/kg wet		20.0		94	70-130	5	25
Bromodichloromethane	20.9		μg/kg wet		20.0		104	70-130	3	25
Bromoform	18.5		μg/kg wet		20.0		93	70-130	0.5	25
Bromomethane	20.4		μg/kg wet		20.0		102	70-130	6	50
2-Butanone (MEK)	16.3		μg/kg wet		20.0		81	70-130	2	50
n-Butylbenzene	23.0		μg/kg wet		20.0		115	70-130	4	25
sec-Butylbenzene	22.4		μg/kg wet		20.0		112	70-130	3	25
tert-Butylbenzene	22.8		μg/kg wet		20.0		114	70-130	3	25
Carbon disulfide	21.6		μg/kg wet		20.0		108	70-130	4	25
Carbon tetrachloride	20.8		μg/kg wet		20.0		104	70-130	4	25
Chlorobenzene	18.8		μg/kg wet		20.0		94	70-130	2	25
Chloroethane	18.7		μg/kg wet		20.0		94	70-130	5	50
Chloroform	19.8		μg/kg wet		20.0		99	70-130	4	25
Chloromethane	19.4		μg/kg wet		20.0		97	70-130	4	25
2-Chlorotoluene	19.5		μg/kg wet		20.0		97	70-130	1	25
4-Chlorotoluene	20.6		μg/kg wet		20.0		103	70-130	2	25
1,2-Dibromo-3-chloropropane	16.5		μg/kg wet		20.0		82	70-130	4	25
Dibromochloromethane	20.6		μg/kg wet		20.0		103	70-130	0.6	50
1,2-Dibromoethane (EDB)	19.5		μg/kg wet		20.0		98	70-130	0.9	25
Dibromomethane	18.7		μg/kg wet		20.0		94	70-130	0.4	25
1,2-Dichlorobenzene	20.2		μg/kg wet		20.0		101	70-130	3	25
1,3-Dichlorobenzene	19.0		μg/kg wet		20.0		95	70-130	3	25
1,4-Dichlorobenzene	18.6		μg/kg wet		20.0		93	70-130	5	25
Dichlorodifluoromethane (Freon12)	19.0		μg/kg wet		20.0		95	70-130	1	50
1,1-Dichloroethane	18.9		μg/kg wet		20.0		94	70-130	4	25
1,2-Dichloroethane	19.3		μg/kg wet		20.0		97	70-130	2	25
1,1-Dichloroethene	19.3		μg/kg wet		20.0		96	70-130	4	25
cis-1,2-Dichloroethene	18.9		μg/kg wet		20.0		95	70-130	3	25
trans-1,2-Dichloroethene	18.8		μg/kg wet		20.0		94	70-130	4	25
1,2-Dichloropropane	19.9		μg/kg wet		20.0		100	70-130	2	25
1,3-Dichloropropane	18.9		μg/kg wet		20.0		94	70-130	2	25
2,2-Dichloropropane	18.7		μg/kg wet		20.0		94	70-130	9	25
1,1-Dichloropropene	20.2		μg/kg wet		20.0		101	70-130	3	25
cis-1,3-Dichloropropene	20.8		μg/kg wet		20.0		104	70-130	3	25
trans-1,3-Dichloropropene	20.7		μg/kg wet		20.0		103	70-130	1	25
Ethylbenzene	21.8		μg/kg wet		20.0		109	70-130	2	25
Hexachlorobutadiene	23.3		μg/kg wet		20.0		116	70-130	2	50

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
A-L 11229/5 (SW94/ 5020 C-11/Link Land)										
tch 1123865 - SW846 5030 Soil (high level) LCS Dup (1123865-BSD1)					Pre	epared & Ai	nalyzed: 16-	Nov-11		
2-Hexanone (MBK)	16.6		μg/kg wet		20.0	,	83	70-130	10	25
Isopropylbenzene	20.2		μg/kg wet		20.0		101	70-130	1	25
4-Isopropyltoluene	22.7		μg/kg wet		20.0		114	70-130	4	25
Methyl tert-butyl ether	18.8		μg/kg wet		20.0		94	70-130	0.7	25
4-Methyl-2-pentanone (MIBK)	17.8		μg/kg wet		20.0		89	70-130	0.7	50
Methylene chloride	18.1		μg/kg wet		20.0		91	70-130	3	25
Naphthalene	19.4		μg/kg wet		20.0		97	70-130	3	25
n-Propylbenzene	22.7		μg/kg wet		20.0		114	70-130	3	25
Styrene	20.1		μg/kg wet		20.0		100	70-130	3	25
1,1,1,2-Tetrachloroethane	20.5		μg/kg wet		20.0		102	70-130	3	25
1,1,2,2-Tetrachloroethane	17.8		μg/kg wet		20.0		89	70-130	2	25
Tetrachloroethene	19.6		μg/kg wet		20.0		98	70-130	0.7	25
Toluene	19.4		μg/kg wet		20.0		97	70-130	3	25
1,2,3-Trichlorobenzene	21.5		μg/kg wet		20.0		107	70-130	3	25
1,2,4-Trichlorobenzene	20.9		μg/kg wet		20.0		104	70-130	6	25
1,3,5-Trichlorobenzene	20.3		μg/kg wet		20.0		102	70-130	4	25
1,1,1-Trichloroethane	21.0		μg/kg wet		20.0		105	70-130	4	25
1,1,2-Trichloroethane	18.6		μg/kg wet		20.0		93	70-130	4	25
Trichloroethene	19.0		μg/kg wet		20.0		95	70-130	6	25
Trichlorofluoromethane (Freon 11)	20.1		μg/kg wet		20.0		101	70-130	4	50
1,2,3-Trichloropropane	17.5		μg/kg wet		20.0		87	70-130	3	25
1,2,4-Trimethylbenzene	23.5		μg/kg wet		20.0		118	70-130	3	25
1,3,5-Trimethylbenzene	23.5		μg/kg wet		20.0		118	70-130	3	25
Vinyl chloride	27.3	QC2	μg/kg wet		20.0		136	70-130	3	25
m,p-Xylene	43.1		μg/kg wet		40.0		108	70-130	3	25
o-Xylene	21.2		μg/kg wet		20.0		106	70-130	3	25
Tetrahydrofuran	18.9		μg/kg wet		20.0		95	70-130	1	25
Ethyl ether	17.9		μg/kg wet		20.0		90	70-130	5	50
Tert-amyl methyl ether	19.4		μg/kg wet		20.0		97	70-130	2	25
Ethyl tert-butyl ether	22.1		μg/kg wet		20.0		110	70-130	3	25
Di-isopropyl ether	19.7		μg/kg wet		20.0		99	70-130	3	25
Tert-Butanol / butyl alcohol	158		μg/kg wet		200		79	70-130	2	25
1,4-Dioxane	198		μg/kg wet		200		99	70-130	3	25
trans-1,4-Dichloro-2-butene	18.1		μg/kg wet		20.0		91	70-130	2	25
Ethanol	321		μg/kg wet		400		80	70-130	7	30
Surrogate: 4-Bromofluorobenzene	30.3		μg/kg wet		30.0		101	70-130		
Surrogate: Toluene-d8	30.9		μg/kg wet		30.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	30.5		μg/kg wet		30.0		102	70-130		
Surrogate: Dibromofluoromethane	33.0		μg/kg wet		30.0		110	70-130		

Notes and Definitions

QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

R05 Elevated Reporting Limits due to the presence of high levels of non-target analytes.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Nicole Leja

	4
1	(1)
	2
	3

ELECTON CANTED DE	E-mail to Sbaxter@ecsconsv	710		10/		S S	M M	froll 100	I
		3					10112		
,		Time: Ten		Date:		Received by:) Rec	Refinauished by:	Refii
			-						
	τ.								
			-				-		
9		×		ر د	2	02.4	= 3	E-N-11(8)	ること
Other State-specific reporting standards:		# of P	# of A	# of V	Туре	Time:	Date:	Sample Id:	Lab Id:
□ NY ASP A* □ NY ASP B* □ NJ Reduced* □ NJ Full*		lastic					C=Composite	G=Grab C=(
QA/QC Reporting Level Standard No QC DQA*				/ials			λ3=	X2=	XI=
MA DEP MCP CAM Report: YeS No□ CT DPH RCP Report: Yes □ No□	Analyses:		Containers:			WW=Wastewater L=Sludge A=Air	\sim	GW=G Water	ii Dr
* additional charges may apply		3011		ic you	11=	, INCLI	10	9= Deioniz	8= NaHSO ₄
OA/OC Reporting Notes:	List preservative code below:		7=CH,0H	ic Acid	6=Ascorbic Acid	S=NaOH	SO, 4=HNO,	20. 7=PC1	1=Na-S2O-
R	Sampler(s): K. Freel	C002	RQN:			P.O. No.:	xtar	てらせ その	Project Mor
State: Ma	Location: Some will							<i>j</i>	-
K CO TINK	Site Name: Conway pal				and the same of th		1841	n Ma O	MOBULA
813	Project No.: 05-20 6613			Š	o: e(Invoice To:		45 PT	Report To: 5
Min. 24-hour notification needed for rusnes. Samples disposed of after 60 days unless otherwise instructed.	Samples disposed of a otherwise instructed.		of _	Page	Pa	_		SPECTRUM ANALYTICAL, INC Featuring HANIBAL TECHNOLOGY	SPE
✓ Standard TAT - 7 to 10 business days ☐ Rush TAT - Date Needed: All TATs subject to laboratory approval.		CHAIN OF CUSTODY RECOR	TO	SUL	OF (MIAF	CH	2	
Special Handling:									

□ Ambient □ loed ■ Refrigerated □ Fridge temp ___ °C □ Freezer temp ___ °C

Thursday, December 22, 2011

GeoLabs, Inc.

GeoLabs, Inc. 45 Johnson Lane Braintree MA 02184 Tele: 781 848 7844

Fax: 781 848 7811

Mike Bundy

EST

51 Fremont Street

Needham, MA 02494

TEL: (781) 455-0003 FAX: (781) 455-8336

Project:

Somerville Ice Rink

Location:

Order No.: 1112187

Dear Mike Bundy:

GeoLabs, Inc. received 3 sample(s) on 12/16/2011 for the analyses presented in the following report.

The laboratory results in this report relate only to samples submitted.

All data for associated QC met method or laboratory specifications, except when noted in the Case Narrative.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

David Mick

Laboratory Director

For current certifications, please visit our website at www.geolabs.com

Certifications:

CT (PH-0148) - MA (M-MA015) - ME (MA0015) - NH (2508) - NJ (MA009) - RI (LA000252) Accredited in Accordance with NELAC

Date: 22-Dec-11

CLIENT:

EST

Project:

Somerville Ice Rink

Lab Order:

1112187

CASE NARRATIVE

Physical Condition of Samples

The project was received by the laboratory in satisfactory condition. The sample(s) were received undamaged, in appropriate containers with the correct preservation.

Project Documentation

The project was accompanied by satisfactory Chain of Custody documentation.

Analysis of Sample(s)

All extractable samples were extracted and analyzed and any Volatile samples were analyzed within method specified holding times and according to GeoLabs documented Standard Operating Procedure. No analytical anomalies or non-conformances were noted by the laboratory during the processing of these samples.

SIGNATURE:

LAB DIRECTOR

PRINTED NAME: David Mick

DATE: December 22, 2011

Reported Date: 22-Dec-11

CLIENT:

EST

Client Sample ID: TP-1

Lab Order:

1112187

Project:

Collection Date: 12/15/2011 8:00:00 AM

Lab ID:

Somerville Ice Rink 1112187-001

Date Received: 12/16/2011

Matrix: SOIL

Analyses

Result Det. Limit Qual Units

Date Analyzed \mathbf{DF}

TOTAL PETROLEUM HYDROCARBONS - 8100M

Analyst: Jsi

P	rep	Method:
Total Petroleum Hydroca	arbo	ns
Surr: o-Terphenyl		

(8100M)

Prep Date:

12/21/2011 1:49:13 PM

176 56.8 103 40-140 mg/Kg-dry %REC

12/19/2011 1 12/19/2011

POLYCHLORINATED BIPHENYLS - SW8082

Analyst: KG

Prep Method:	(SW3545A)	Pre	Date: 12/21/2	011 3:19:04	PM	
Aroclor 1016	ND	56.8	μg/Kg-dry	1	12/22/2011	
Aroclor 1221	ND	114	μg/Kg-dry	1	12/22/2011	
Aroclor 1232	ND	56.8	μg/Kg-dry	1	12/22/2011	
Aroclor 1242	ND	56.8	μg/Kg-dry	1	12/22/2011	
Arocior 1248	ND	56.8	μg/Kg-dry	1	12/22/2011	
Aroclor 1254	771	56.8	μg/Kg-dry	1	12/22/2011	
Aroclor 1260	ND	56.8	μg/Kg-dry	1	12/22/2011	
Surr: Decachlorobiphenyl Sig 1	96.1	30-150	%REC	1	12/22/2011	
Surr: Decachlorobiphenyl Sig 2	82.7	30-150	%REC	1	12/22/2011	
Surr: Tetrachloro-m-Xylene Sig 1	67.9	30-150	%REC	1	12/22/2011	
Surr: Tetrachloro-m-Xylene Sig 2	85.0	30-150	%REC	1	12/22/2011	

MERCURY - SW7471A

Analyst: EC

	Prep Method:	` '	Prep Da	ite: 12/20/2	011 2:49:16	PM
Мегсигу		0.366	0.284	mg/Kg-dry	1	12/20/2011

RCRA METALS W/O HG - SW6010B

Spike Recovery outside recovery limits

Analyst: QS

		Prep Method: (SW3050B)	Pre	ep Date: 12/21/20	011 12:51:	50 PM
Arsenic		ND	5.64	mg/Kg-dry	1	12/21/2011
Barium		63.1	5.64	mg/Kg-dry	1	12/21/2011
Cadmium		9.48	1.13	mg/Kg-dry	1	12/21/2011
Chromium		16.8	5.64	mg/Kg-dry	1	12/21/2011
Lead		789	5.64	mg/Kg-dry	1	12/21/2011
Selenium		ND	5.64	mg/Kg-dry	1	12/21/2011
Silver		ND	11.3	mg/Kg-dry	1	12/21/2011
Qualifiers:	В	Analyte detected in the associated Method Blank	k	BRL Below Repo	orting Limit	
-	E	Value above quantitation range			-	ration or analysis exceeded
	J	Analyte detected below quantitation limits		ND Not Detecte		=

Reported Date: 22-Dec-11

CLIENT:

EST

Client Sample ID: TP-1

Lab Order:

1112187

Collection Date: 12/15/2011 8:00:00 AM

Project: Lab ID: Somerville Ice Rink 1112187-001

Date Received: 12/16/2011

Matrix: SOIL

Analyses

Result Det. Limit Qual Units DF Date Analyzed

TCLP LEAD - 6010B

Analyst: QS

Prep Method:

(SW3010A)

Prep Date:

12/22/2011 12:09:08 PM

Lead

3.20

0.0500 mg/L 12/22/2011

SEMIVOLATILE ORGANICS - SW8270C

Analyst: ZYZ

Prep Method:	(SW3545A)	Prep	Date:	12/21/2	011 2:57:56	PM
1,1'-Biphenyl	ND	11.4	μg/K	g-dry	1	12/21/2011 2:29:00 PM
1,2,4-Trichlorobenzene	ND	114	μg/K	g-dry	1	12/21/2011 2:29:00 PM
1,2-Dichlorobenzene	ND	114	μg/K	g-dry	1	12/21/2011 2:29:00 PM
1,2-Dinitrobenzene	ND	114	μg/K	g-dry	1	12/21/2011 2:29:00 PM
1,3-Dichlorobenzene	ND	114	μg/K	g-dry	1	12/21/2011 2:29:00 PM
1,3-Dinitrobenzene	ND	114	µg/K	g-dry	1	12/21/2011 2:29:00 PM
1,4-Dichlorobenzene	ND	114	μg/K	g-dry	1	12/21/2011 2:29:00 PM
1,4-Dinitrobenzene	ND	114	μg/K	g-dry	1	12/21/2011 2:29:00 PM
2,3,4,6-Tetrachlorophenol	ND	114		g-dry	1	12/21/2011 2:29:00 PM
2,4,5-Trichlorophenol	ND	114	μg/K	g-dry	1	12/21/2011 2:29:00 PM
2,4,6-Trichlorophenol	ND	114	µg/K	g-dry	1	12/21/2011 2:29:00 PM
2,4-Dichlorophenol	ND	114		g-dry	1	12/21/2011 2:29:00 PM
2,4-Dimethylphenol	ND	114	μg/K	g-dry	1	12/21/2011 2:29:00 PM
2,4-Dinitrophenol	ND	568	μg/K	g-dry	1	12/21/2011 2:29:00 PM
2,4-Dinitrotoluene	ND	114	μg/K	g-dry	1	12/21/2011 2:29:00 PM
2,6-Dinitrotoluene	ND	114	μg/K	g-dry	1	12/21/2011 2:29:00 PM
2-Chloronaphthalene	ND	114	μg/K	g-dry	1	12/21/2011 2:29:00 PM
2-Chlorophenol	ND	114	μg/K	g-dry	1	12/21/2011 2:29:00 PM
2-Methylnaphthalene	435	114		g-dry	1	12/21/2011 2:29:00 PM
2-Methylphenol	ND	114		g-dry	1	12/21/2011 2:29:00 PM
2-Nitroaniline	ND	114	µg/K	- •	1	12/21/2011 2:29:00 PM
2-Nitrophenol	ND	114		g-dry	1	12/21/2011 2:29:00 PM
3,3´-Dichlorobenzidine	ND	114		g-dry	1	12/21/2011 2:29:00 PM
3-Methylphenol/4-Methylphenol	ND	114		g-dry	1	12/21/2011 2:29:00 PM
3-Nitroaniline	ND	114		g-dry	1	12/21/2011 2:29:00 PM
4,6-Dinitro-2-Methylphenol	ND	568		g-dry	1	12/21/2011 2:29:00 PM
4-Bromophenyl Phenyl Ether	ND	114		g-dry	1	12/21/2011 2:29:00 PM
4-Chloro-3-Methylphenol	ND	568		g-dry	1	12/21/2011 2:29:00 PM
4-Chloroaniline	ND	114	μg/K		1	12/21/2011 2:29:00 PM
4-Chlorophenyl Phenyl Ether	ND	114	μg/K		1	12/21/2011 2:29:00 PM

Qualifiers:

- В Analyte detected in the associated Method Blank
- E Value above quantitation range

- BRL Below Reporting Limit
- J Analyte detected below quantitation limits
- Holding times for preparation or analysis exceeded

- Spike Recovery outside recovery limits
- ND Not Detected at the Reporting Limit

Reported Date: 22-Dec-11

CLIENT: Lab Order: **EST**

1112187

Project:

Somerville Ice Rink

Lab ID:

1112187-001

Client Sample ID: TP-1

Collection Date: 12/15/2011 8:00:00 AM Date Received: 12/16/2011

Matrix: SOIL

Analyses

Result Det. Limit Qual Units DF Date Analyzed

Analyst: ZYZ

SEMIVOLATILE ORGANICS - SW8270C

Prep Method:	(SW3545A)	Pre	Date:	12/21/20	11 2:57:56	PM
4-Nitroaniline	ND	114	μg/K	g-dry	1	12/21/2011 2:29:00 PM
4-Nitrophenol	ND	114	μg/K	g-dry	1	12/21/2011 2:29:00 PM
Acenaphthene	578	114	μg/ K	g-dry	1	12/21/2011 2:29:00 PM
Acenaphthylene	739	114	μg/ K	g-dry	1	12/21/2011 2:29:00 PM
Acetophenone	ND	114	μg/K		1	12/21/2011 2:29:00 PM
Aniline	ND	568	µg/K	g-dry	1	12/21/2011 2:29:00 PM
Anthracene	1930	114	μg/ K g		1	12/21/2011 2:29:00 PM
Azobenzene	ND	568	μg/K		1	12/21/2011 2:29:00 PM
Benz(a)Anthracene	4220	11.4	μg/K	g-dry	1	12/21/2011 2:29:00 PM
Benzo(a)Pyrene	3790	11.4	μg/ K g	g-dry	1	12/21/2011 2:29:00 PM
Benzo(b)Fluoranthene	4260	114	μg/K	g-dry	1	12/21/2011 2:29:00 PM
Benzo(g,h,i)Perylene	2250	114	μg/K		1	12/21/2011 2:29:00 PM
Benzo(k)Fluoranthene	2430	114	μg/K	-	1	12/21/2011 2:29:00 PM
Benzyl Alcohol	ND	114	µg/K		1	12/21/2011 2:29:00 PM
Bis(2-Chloroethoxy)Methane	ND	114	µg/K		1	12/21/2011 2:29:00 PM
Bis(2-Chloroethyl)Ether	ND	114	µg/Kg	-	1	12/21/2011 2:29:00 PM
Bis(2-Chloroisopropyl)Ether	ND	114	µg/K	- •	1	12/21/2011 2:29:00 PM
Bis(2-Ethylhexyl)Phthalate	ND	114	μg/Kg		1	12/21/2011 2:29:00 PM
Butyl Benzyl Phthalate	ND	114	μg/Kg		1	12/21/2011 2:29:00 PM
Carbazole	712	114	μg/Kg	-	1	12/21/2011 2:29:00 PM
Chrysene	4120	114	µg/Kg	-	1	12/21/2011 2:29:00 PM
Dibenz(a,h)Anthracene	238	11.4	μg/Kg		1	12/21/2011 2:29:00 PM
Dibenzofuran	532	114	μg/Kg	-	1	12/21/2011 2:29:00 PM
Diethyl Phthalate	ND	114	μg/Kg	•	1	12/21/2011 2:29:00 PM
Dimethyl Phthalate	ND	114	μg/Kg	-	1	12/21/2011 2:29:00 PM
Di-n-Butyl Phthalate	ND	568	μg/Kg	-	1	12/21/2011 2:29:00 PM
Dì-n-Octyl Phthalate	ND	114	μg/ K g		1	12/21/2011 2:29:00 PM
Fluoranthene	7670	114	μg/Kg		1	12/21/2011 2:29:00 PM
Fluorene	706	114	µg/Kg		1	12/21/2011 2:29:00 PM
Hexachlorobenzene	ND	11.4	μg/Kg		1	12/21/2011 2:29:00 PM
Hexachlorobutadiene	ND	11.4	μg/Kg		1	12/21/2011 2:29:00 PM
Hexachlorocyclopentadiene	ND	568	μg/Kg		1	12/21/2011 2:29:00 PM
Hexachloroethane	ND	114	μg/Kg		1	12/21/2011 2:29:00 PM
Indeno(1,2,3-cd)Pyrene	2120	11.4	μg/Kg	-	1	12/21/2011 2:29:00 PM
Isophorone	ND	114	µg/Kg		1	12/21/2011 2:29:00 PM
Naphthalene	1100	114	µg/Kg		1	12/21/2011 2:29:00 PM
					•	

Qualifiers:

- Analyte detected in the associated Method Blank
- E Value above quantitation range
 - Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 22-Dec-11

CLIENT:

EST

Client Sample ID: TP-I

Lab Order:

1112187

icut Sample 1D: 11-1

Project:

111210/

Collection Date: 12/15/2011 8:00:00 AM

Lab ID:

Somerville Ice Rink 1112187-001

Date Received: 12/16/2011 Matrix: SOIL

Analyses

Result Det. Limit Qual Units

DF Date Analyzed

SEMIVOLATILE ORGANICS - SW8270C

Analyst: ZYZ

Prep Method:	(SW3545A)	P	rep Da	ate: 1	2/21/2011 2:57:56 PM	<i>I</i> I
Nitrobenzene	ND	114		μg/Kg-d	ry 1	12/21/2011 2:29:00 PM
N-Nitrosodimethylamine	ND	568		μg/Kg-d	ry 1	12/21/2011 2:29:00 PM
N-Nitrosodi-n-Propylamine	ND	114		μg/Kg-d	ry 1	12/21/2011 2:29:00 PM
N-Nitrosodiphenylamine	ND	568		μg/Kg-d	ry 1	12/21/2011 2:29:00 PM
Pentachlorophenol	ND	114		μg/Kg-d	ry 1	12/21/2011 2:29:00 PM
Phenanthrene	5770	114		μg/Kg-d	y 1	12/21/2011 2:29:00 PM
Phenol	ND	114		μg/Kg-d	y 1	12/21/2011 2:29:00 PM
Pyrene	7710	114		μg/Kg-d	γ 1	12/21/2011 2:29:00 PM
Pyridine	ND	568		μg/Kg-d	· v 1	12/21/2011 2:29:00 PM
Surr: 2,4,6-Tribromophenol	74.0	30-130		%REC	- 1	12/21/2011 2:29:00 PM
Surr: 2-Fluorobiphenyl	42.6	30-130		%REC	1	12/21/2011 2:29:00 PM
Surr: 2-Fluorophenol	23.1	30-130	s	%REC	1	12/21/2011 2:29:00 PM
Surr: Nitrobenzene-d5	41.4	30-130		%REC	1	12/21/2011 2:29:00 PM
Surr: Phenol-d6	47.5	30-130		%REC	1	12/21/2011 2:29:00 PM
Surr: Terphenyl-d14	56.1	30-130		%REC	1	12/21/2011 2:29:00 PM

VOLATILE ORGANIC COMPOUNDS - 8260B

Analyst: ZC

Prep Method:		Prep	Date:		
1,1,1,2-Tetrachloroethane	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM
1,1,1-Trichloroethane	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM
1,1,2,2-Tetrachloroethane	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM
1,1,2-Trichloroethane	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM
1,1-Dichloroethane	ND	142	μg/Kg-dry	1	12/19/2011 7:18:00 PM
1,1-Dichloroethene	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM
1,1-Dichloropropene	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM
1,2,3-Trichlorobenzene	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM
1,2,4-Trichlorobenzene	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM
1,2,4-Trimethylbenzene	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM
1,2-Dibromo-3-Chloropropane	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM
1,2-Dibromoethane	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM
1,2-Dichlorobenzene	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM
1,2-Dichloroethane	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM
1,2-Dichloropropane	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM
1,3,5-Trimethylbenzene	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM

Qualifiers:

S

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Spike Recovery outside recovery limits

Reported Date: 22-Dec-11

CLIENT:

EST

Client Sample ID: TP-1

Lab Order:

1112187

Collection Date: 12/15/2011 8:00:00 AM

Project:

Somerville Ice Rink

Date Received: 12/16/2011

Lab ID:

1112187-001

Matrix: SOIL

Analyses	Result	Det. Limit	Qual U	Jnits	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS -	8260B					Analyst: ZC
Prep Method:		i	Prep Date:	:		
1,3-Dichlorobenzene	ND	56.8	μ	g/Kg-dry	1	12/19/2011 7:18:00 PN
1,3-Dichloropropane	ND	56.8	μ	g/Kg-dry	1	12/19/2011 7:18:00 PM
1,4-Dichlorobenzene	ND	56.8	μ	g/Kg-dry	1	12/19/2011 7:18:00 PM
2,2-Dichloropropane	ND	142	μ	g/Kg-dry	1	12/19/2011 7:18:00 PM
2-Butanone	ND	142	μ	g/Kg-dry	1	12/19/2011 7:18:00 PM
2-Chloroethyl Vinyl Ether	ND	56.8	μ	g/Kg-dry	1	12/19/2011 7:18:00 PM
2-Chlorotoluene	ND	142	μ	g/Kg-dry	1	12/19/2011 7:18:00 PM
2-Hexanone	ND	142	μ	g/Kg-dry	1	12/19/2011 7:18:00 PM
2-Methoxy-2-Methylbutane (TAME)	ND	56.8	μ	g/Kg-dry	1	12/19/2011 7:18:00 PM
4-Chlorotoluene	ND	142	μ	g/Kg-dry	1	12/19/2011 7:18:00 PM
4-Isopropyltoluene	ND	56.8	μ	g/Kg-dry	1	12/19/2011 7:18:00 PM
4-Methyl-2-Pentanone	57.4	56.8	μ	g/Kg-dry	1	12/19/2011 7:18:00 PM
Acetone	ND	142	μ	g/Kg-dry	1	12/19/2011 7:18:00 PM
Acrylonitrile	ND	56.8	μ	g/Kg-dry	1	12/19/2011 7:18:00 PM
Benzene	ND	56.8		g/Kg-dry	1	12/19/2011 7:18:00 PM
Bromobenzene	ND	56.8	μ	g/Kg-dry	1	12/19/2011 7:18:00 PM
Bromochloromethane	ND	142	μ	g/Kg-dry	1	12/19/2011 7:18:00 PM
Bromodichloromethane	ND	56.8	μ	g/Kg-dry	1	12/19/2011 7:18:00 PN
Bromoform	ND	56.8		g/Kg-dry	1	12/19/2011 7:18:00 PM
Bromomethane	ND	56.8		g/Kg-dry	1	12/19/2011 7:18:00 PM
Carbon Disulfide	ND	56.8		g/Kg-dry	1	12/19/2011 7:18:00 PM
Carbon Tetrachloride	ND	56.8		g/Kg-dry	1	12/19/2011 7:18:00 PM
Chlorobenzene	ND	56.8		g/Kg-dry	1	12/19/2011 7:18:00 PM
Chloroethane	ND	56.8		g/Kg-dry	1	12/19/2011 7:18:00 PM
Chloroform	ND	56.8		g/Kg-dry	1	12/19/2011 7:18:00 PM
Chloromethane	ND	56.8		g/Kg-dry	1	12/19/2011 7:18:00 PM
cis-1,2-Dichloroethene	ND	56.8		g/Kg-dry	1	12/19/2011 7:18:00 PM
cis-1,3-Dichloropropene	ND	56.8		g/Kg-dry	1	12/19/2011 7:18:00 PM
Dibromochloromethane	ND	56.8		g/Kg-dry	1	12/19/2011 7:18:00 PM
Dibromomethane	ND	56.8		g/Kg-dry	1	12/19/2011 7:18:00 PM
Dichlorodifluoromethane	ND	56.8		g/Kg-dry	' 1	12/19/2011 7:18:00 PM
Diethyl Ether	ND	56.8		g/Kg-dry	1	12/19/2011 7:18:00 PM
Diisopropyl Ether	ND	56.8		g/Kg-dry	1	12/19/2011 7:18:00 PM
Ethylbenzene	ND	56.8		g/Kg-dry	1	12/19/2011 7:18:00 PM
Ethyl-t-Butyl Ether	ND	56.8		g/Kg-dry	1	12/19/2011 7:18:00 PM
Hoyaphiarahutadiana	N. 15"	***	h-1	aa		12113/2011 /.10.00 FW

Qualifiers:

Hexachlorobutadiene

B Analyte detected in the associated Method Blank

ND

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

BRL Below Reporting Limit

µg/Kg-dry

H Holding times for preparation or analysis exceeded

1

ND Not Detected at the Reporting Limit

GeoLabs, Inc. 45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811

56.8

12/19/2011 7:18:00 PM

Reported Date: 22-Dec-11

CLIENT:

EST

Client Sample ID: TP-1

Lab Order:

1112187

can sample in. 11-1

Project:

111210/

Collection Date: 12/15/2011 8:00:00 AM

Lab ID:

Somerville Ice Rink 1112187-001

Date Received: 12/16/2011

Matrix: SOIL

Analyses	Result	Det. Limit Q	/	rix: SOIL DF	Data Analyzad
		Det Lint Q	uar Omits	Dr	Date Analyzed
OLATILE ORGANIC COMPOUNDS -	3260B				Analyst: ZC
Prep Method:		Pre	Date:		
Isopropylbenzene	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PN
Methyl Tert-Butyl Ether	ND	56.8	ug/Kg-dry	1	12/19/2011 7:18:00 PM
Methylene Chloride	ND	56.8	µg/Kg-dry	1	12/19/2011 7:18:00 PM
Naphthalene	499	142	μg/Kg-dry	1	12/19/2011 7:18:00 PM
n-Butylbenzene	ND	56.8	µg/Kg-dry	1	12/19/2011 7:18:00 PM
n-Propylbenzene	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM
sec-Butylbenzene	ND	56.8	µg/Kg-dry	1	12/19/2011 7:18:00 PM
Styrene	ND	142	µg/Kg-dry	1	12/19/2011 7:18:00 PM
tert-Butylbenzene	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM
Tetrachloroethene	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM
Tetrahydrofuran	ND	142	μg/Kg-dry	1	12/19/2011 7:18:00 PM
Toluene	ND	56.8	µg/Kg-dry	1	12/19/2011 7:18:00 PM
trans-1,2-Dichloroethene	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM
trans-1,3-Dichloropropene	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PN
Trichloroethene	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM
Trichlorofluoromethane	ND	142	μg/Kg-dry	1	12/19/2011 7:18:00 PM
Vinyl Chloride	ND	56.8	μg/Kg-dry	1	12/19/2011 7:18:00 PM
Xylenes, Total	ND	142	μg/Kg-dry	1	12/19/2011 7:18:00 PM
Surr: 1,2-Dichloroethane-d4	87.8	70-130	%REC	1	12/19/2011 7:18:00 PM
Surr: 4-Bromofluorobenzene	83.6	70-130	%REC	1	12/19/2011 7:18:00 PM
Surr: Dibromofluoromethane	81.8	70-130	%REC	1	12/19/2011 7:18:00 PM
Surr: Toluene-d8	101	70-130	%REC	1	12/19/2011 7:18:00 PM
SPECIFIC CONDUCTANCE - E120.1					Analyst: RP
Prep Method:		Pre	Date:		
Specific Conductance	460	1.00	µmhos/cm	1	12/20/2011
CYANIDE, REACTIVE - SW7.3.3.2					Analyst: RP
Prep Method:		Pre	Date:		- -

Qualifiers:

Reactive Cyanide

B Analyte detected in the associated Method Blank

ND

BRL Below Reporting Limit

mg/Kg-dry

E Value above quantitation range

H Holding times for preparation or analysis exceeded

12/19/2011

- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit

S Spike Recovery outside recovery limits

GeoLabs, Inc. 45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811

0.114

Reported Date: 22-Dec-11

CLIENT:

EST

Lab Order:

1112187

Project: Lab ID:

Reactive Sulfide

Somerville Ice Rink

Prep Method:

1112187-001

Client Sample ID: TP-1

Collection Date: 12/15/2011 8:00:00 AM

Date Received: 12/16/2011

Matrix: SOIL

Analyses

Result

Det. Limit Qual Units

Prep Date:

DF

Date Analyzed

Analyst: RP

SULFIDE, REACTIVE - SW7.3.4.2

ND

0.284

mg/Kg-dry

1

12/19/2011

Qualifiers:

Analyte detected in the associated Method Blank В

Е Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside recovery limits BRL Below Reporting Limit

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reported Date: 22-Dec-11

CLIENT:

EST

Client Sample ID: TP-2

Lab Order:

1112187

Project:

Collection Date: 12/16/2011 8:00:00 AM

Lab ID:

Somerville Ice Rink 1112187-002

Date Received: 12/16/2011

Matrix: SOIL

12/21/2011 1:49:13 PM

Analyses Result DF Date Analyzed

TOTAL PETROLEUM HYDROCARBONS - 8100M

Analyst: Jsi

Prep Method:
Total Petroleum Hydrocarbons
Surr: o-Terphenyl

ND 80.5

(8100M)

54.9 40-140

Det. Limit Qual Units

Prep Date:

mg/Kg-dry %REC

1

1

12/19/2011 12/19/2011

POLYCHLORINATED BIPHENYLS - SW8082

Analyst: KG

Prep Method:	(SW3545A)		Date:	12/21/20)11 3:19:04	PM
Aroclor 1016	ND	54.9	µg/K	g-dry	1	12/22/2011
Aroclor 1221	ND	110	µg/K	g-dry	1	12/22/2011
Aroclor 1232	ND	54.9	μg/K	g-dry	1	12/22/2011
Aroclor 1242	ND	54.9	μg/K	g-dry	1	12/22/2011
Aroclor 1248	ND	54.9	μg/K	g-dry	1	12/22/2011
Aroclor 1254	198	54.9	μg/K	g-dry	1	12/22/2011
Aroclor 1260	ND	54.9	μg/K	g-dry	1	12/22/2011
Surr: Decachlorobiphenyl Sig 1	84.2	30-150	%RE	C.	1	12/22/2011
Surr: Decachlorobiphenyl Sig 2	87.1	30-150	%RE	:C	1	12/22/2011
Surr: Tetrachloro-m-Xylene Sig 1	83.3	30-150	%RE	:C	1	12/22/2011
Surr: Tetrachloro-m-Xylene Sig 2	87.4	30-150	%RE	C	1	12/22/2011

MERCURY - SW7471A

Analyst: EC

	Prep Method:	(SW7471A)	- •-		12/20/201		S PM
Mercury		ND	0.275	mg/Kg	-dry	1	12/20/2011

RCRA METALS W/O HG - SW6010B

5

Analyst: QS

	Prep Method:	(SW3050B)			11 12:51:5	
Arsenic		ND	5.42	mg/Kg-dry	1	12/21/2011
Barium		43.8	5.42	mg/Kg-dry	1	12/21/2011
Cadmium		ND	1.08	mg/Kg-dry	1	12/21/2011
Chromium		15.8	5.42	mg/Kg-dry	1	12/21/2011
ead		157	5.42	mg/Kg-dry	1	12/21/2011
Selenium		ND	5.42	mg/Kg-dry	1	12/21/2011
Silver		ND	10.8	mg/Kg-dry	1	12/21/2011

Qualifiers:

- В Analyte detected in the associated Method Blank
- BRL Below Reporting Limit

E Value above quantitation range

- H Holding times for preparation or analysis exceeded
- Analyte detected below quantitation limits Spike Recovery outside recovery limits
- ND Not Detected at the Reporting Limit

Reported Date: 22-Dec-11

CLIENT:

EST

Client Sample ID: TP-2

Lab Order:

1112187

ient Sample ID. 11-2

Project:

Somerville Ice Rink

Collection Date: 12/16/2011 8:00:00 AM

Lab ID:

1112187-002

Date Received: 12/16/2011 Matrix: SOIL

Analyses

Result Det. Limit Qual Units

0.0500

DF Date Analyzed

TCLP LEAD - 6010B

Analyst: **QS**

Prep Method:

(SW3010A)

Prep Date:

12/22/2011 12:09:08 PM

Lead

0.910

mg/L

5 12/22/2011

SEMIVOLATILE ORGANICS - SW8270C

Analyst: ZYZ

Prep Method:	(SW3545A)	Prep	Date:	12/21/20	11 2:57:56	S PM
1,1'-Biphenyl	ND	11.0	μg/Kg	dry-	1	12/21/2011 3:05:00 PM
1,2,4-Trichlorobenzene	ND	110	µg/Kg	-dry	1	12/21/2011 3:05:00 PM
1,2-Dichlorobenzene	ND	110	μg/Kg-	-dry	1	12/21/2011 3:05:00 PM
1,2-Dinitrobenzene	ND	110	μg/Kg-	•	1	12/21/2011 3:05:00 PM
1,3-Dichlorobenzene	ND	110	μg/Kg-	•	1	12/21/2011 3:05:00 PM
1,3-Dinitrobenzene	ND	110	μg/Kg-	-	1	12/21/2011 3:05:00 PM
1,4-Dichlorobenzene	ND	110	μg/Kg-	-	1	12/21/2011 3:05:00 PM
1,4-Dinitrobenzene	ND	110	μg/Kg-		1	12/21/2011 3:05:00 PM
2,3,4,6-Tetrachlorophenol	ND	110	μg/Kg-	dry	1	12/21/2011 3:05:00 PM
2,4,5-Trichlorophenol	ND	110	µg/Kg-	dry	1	12/21/2011 3:05:00 PM
2,4,6-Trichlorophenol	ND	110	μg/Kg-	dry	1	12/21/2011 3:05:00 PM
2,4-Dichlorophenol	ND	110	μg/Kg-	-	1	12/21/2011 3:05:00 PM
2,4-Dimethylphenol	ND	110	µg/Kg-	-	1	12/21/2011 3:05:00 PM
2,4-Dinitrophenol	ND	549	µg/Kg-	•	1	12/21/2011 3:05:00 PM
2,4-Dinitrotoluene	ND	110	µg/Kg-	-	1	12/21/2011 3:05:00 PM
2,6-Dinitrotoluene	ND	110	μg/Kg-	-	1	12/21/2011 3:05:00 PM
2-Chloronaphthalene	ND	110	μg/Kg-	dry	1	12/21/2011 3:05:00 PM
2-Chlorophenol	ND	110	μg/Kg-	dry	1	12/21/2011 3:05:00 PM
2-Methylnaphthalene	ND	110	μg/Kg-		1	12/21/2011 3:05:00 PM
2-Methylphenol	ND	110	μg/Kg-		1	12/21/2011 3:05:00 PM
2-Nîtroaniline	ND	110	μg/Kg-	dry	1	12/21/2011 3:05:00 PM
2-Nitrophenol	ND	110	μg/Kg-	dry	1	12/21/2011 3:05:00 PM
3,3'-Dichlorobenzidine	ND	110	μg/Kg-	dry	1	12/21/2011 3:05:00 PM
3-Methylphenol/4-Methylphenol	ND	110	μg/Kg-	-	1	12/21/2011 3:05:00 PM
3-Nitroaniline	ND	110	μg/Kg-	-	1	12/21/2011 3:05:00 PM
4,6-Dinitro-2-Methylphenol	ND	549	ug/Kg-	-	1	12/21/2011 3:05:00 PM
4-Bromophenyl Phenyl Ether	ND	110	μg/Kg-	•	1	12/21/2011 3:05:00 PM
4-Chloro-3-Methylphenol	ND	549	µg/Kg-	•	1	12/21/2011 3:05:00 PM
4-Chloroaniline	ND	110	µg/Kg-	•	1	12/21/2011 3:05:00 PM
4-Chlorophenyi Phenyi Ether	ND	110	µg/Kg-	•	1	12/21/2011 3:05:00 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
 S Spike Recovery outside recovery limits
- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 22-Dec-11

CLIENT:

EST

Client Sample ID: TP-2

Lab Order:

1112187

Collection Date: 12/16/2011 8:00:00 AM

Project: Lab ID:

Somerville Ice Rink 1112187-002

Date Received: 12/16/2011 Matrix: SOIL

Analyses

Result Det. Limit Qual Units

DF Date Analyzed

SEMIVOLATILE ORGANICS - SW8270C

Analyst: ZYZ

Prep Metho	od: (SW3545A)	Prep	Date:	12/21/20	11 2:57:56	PM
4-Nitroaniline	ND	110	μg/Kg	-dry	1	12/21/2011 3:05:00 PN
4-Nitrophenol	ND	110	µg/Kg	-dry	1	12/21/2011 3:05:00 PM
Acenaphthene	ND	110	µg/Kg	-dry	1	12/21/2011 3:05:00 PM
Acenaphthylene	116	110	µg/Kg	-dry	1	12/21/2011 3:05:00 PM
Acetophenone	ND	110	μg/Kg	-	1	12/21/2011 3:05:00 PM
Aniline	ND	549	μg/Kg	-	1	12/21/2011 3:05:00 PM
Anthracene	323	110	μg/Kg	•	1	12/21/2011 3:05:00 PM
Azobenzene	ND	549	μg/Kg	-	1	12/21/2011 3:05:00 PN
Benz(a)Anthracene	536	11.0	μg/Kg	-	1	12/21/2011 3:05:00 PN
Benzo(a)Pyrene	674	11.0	μg/Kg	•	1	12/21/2011 3:05:00 PM
Benzo(b)Fluoranthene	740	110	μg/Kg	•	1	12/21/2011 3:05:00 PM
Benzo(g,h,i)Perylene	366	110	μg/Kg		1	12/21/2011 3:05:00 PN
Benzo(k)Fluoranthene	579	110	μg/Kg		1	12/21/2011 3:05:00 PA
Benzyl Alcohol	ND	110	μg/Kg		1	12/21/2011 3:05:00 PM
Bis(2-Chloroethoxy)Methane	ND	110	μg/Kg	-	1	12/21/2011 3:05:00 PN
Bis(2-Chloroethyl)Ether	ND	110	µg/Kg	•	1	12/21/2011 3:05:00 PM
Bis(2-Chloroisopropyl)Ether	ND	110	µg/Kg	-	1	12/21/2011 3:05:00 PM
Bis(2-Ethylhexyl)Phthalate	ND	110	μg/Kg	-	1	12/21/2011 3:05:00 PM
Butyl Benzyl Phthalate	ND	110	μg/Kg·	•	1	12/21/2011 3:05:00 PM
Carbazole	ND	110	μg/Kg	-	1	12/21/2011 3:05:00 PN
Chrysene	637	110	μg/Kg-	-	1	12/21/2011 3:05:00 PM
Dibenz(a,h)Anthracene	ND	11.0	μg/Kg	•	1	12/21/2011 3:05:00 PM
Dibenzofuran	ND	110	μg/Kg-	•	1	12/21/2011 3:05:00 PM
Diethyl Phthalate	ND	110	μg/Kg-	-dry	1	12/21/2011 3:05:00 PM
Dimethyl Phthalate	ND	110	μg/Kg-		1	12/21/2011 3:05:00 PM
Di-n-Butyl Phthalate	ND	549	μg/Kg-	-	1	12/21/2011 3:05:00 PM
Di-n-Octyl Phthalate	ND	110	μg/Kg-		1	12/21/2011 3:05:00 PM
Fluoranthene	1140	110	μg/Kg-	-	1	12/21/2011 3:05:00 PN
Fluorene	ND	110	μg/Kg-	-	1	12/21/2011 3:05:00 PN
Hexachlorobenzene	ND	11.0	μg/Kg-	-	1	12/21/2011 3:05:00 PM
Hexachlorobutadiene	ND	11.0	μg/Kg-		1	12/21/2011 3:05:00 PM
Hexachlorocyclopentadiene	ND	549	µg/Kg-	•	1	12/21/2011 3:05:00 PM
Hexachloroethane	ND	110	μg/Kg-		1	12/21/2011 3:05:00 PM
Indeno(1,2,3-cd)Pyrene	350	11.0	μg/Kg-	-	1	12/21/2011 3:05:00 PN
Isophorone	ND	110	μg/Kg-		1	12/21/2011 3:05:00 PN
Naphthalene	ND	110	μg/Kg-	•	1	12/21/2011 3:05:00 PN

Qualifiers:

- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 22-Dec-11

CLIENT:

EST

Client Sample ID: TP-2

Lab Order:

1112187

.....

Project:

Somerville Ice Rink

Collection Date: 12/16/2011 8:00:00 AM

Lab ID:

1112187-002

Date Received: 12/16/2011 **Matrix:** SOIL

Analyses

Result Det. Limit Qual Units

DF Date Analyzed

SEMIVOLATILE ORGANICS - SW8270C

Analyst: ZYZ

Prep Method	l: (SW3545A)	P	rep D	ate: 12/21/20	011 2:57:56	РМ
Nitrobenzene	ND	110		μg/Kg-dry	1	12/21/2011 3:05:00 PM
N-Nitrosodimethylamine	ND	549		μg/Kg-dry	1	12/21/2011 3:05:00 PM
N-Nitrosodi-n-Propylamine	ND	110		μg/Kg-dry	1	12/21/2011 3:05:00 PM
N-Nitrosodiphenylamine	ND	549		µg/Kg-dry	1	12/21/2011 3:05:00 PM
Pentachlorophenol	ND	110		ug/Kg-dry	1	12/21/2011 3:05:00 PM
Phenanthrene	860	110		µg/Kg-dry	1	12/21/2011 3:05:00 PM
Phenol	ND	110		μg/Kg-dry	1	12/21/2011 3:05:00 PM
Pyrene	1170	110		μg/Kg-dry	1	12/21/2011 3:05:00 PM
Pyridine	ND	549		μg/Kg-dry	1	12/21/2011 3:05:00 PM
Surr: 2,4,6-Tribromophenol	83.1	30-130		%REC	1	12/21/2011 3:05:00 PM
Surr: 2-Fluorobiphenyl	57.0	30-130		%REC	1	12/21/2011 3:05:00 PM
Surr: 2-Fluorophenol	24.2	30-130	s	%REC	1	12/21/2011 3:05:00 PM
Surr: Nitrobenzene-d5	46.6	30-130		%REC	1	12/21/2011 3:05:00 PM
Surr: Phenol-d6	49.0	30-130		%REC	1	12/21/2011 3:05:00 PM
Surr: Terphenyl-d14	61.4	30-130		%REC	1	12/21/2011 3:05:00 PM

VOLATILE ORGANIC COMPOUNDS - 8260B

Analyst: ZC

Prep Method:		Prep	Date:		
1,1,1,2-Tetrachloroethane	ND	54.9	μg/Kg-dry	1	12/19/2011 7:51:00 PM
1,1,1-Trichloroethane	ND	54.9	µg/Kg-dry	1	12/19/2011 7:51:00 PM
1,1,2,2-Tetrachloroethane	ND	54.9	µg/Kg-dry	1	12/19/2011 7:51:00 PM
1,1,2-Trichloroethane	ND	54.9	μg/Kg-dry	1	12/19/2011 7:51:00 PM
1,1-Dichloroethane	ND	137	μg/Kg-dry	1	12/19/2011 7:51:00 PM
1,1-Dichloroethene	ND	54.9	μg/Kg-dry	1	12/19/2011 7:51:00 PM
1,1-Dichloropropene	ND	54.9	µg/Kg-dry	1	12/19/2011 7:51:00 PM
1,2,3-Trichlorobenzene	ND	54.9	μg/Kg-dry	1	12/19/2011 7:51:00 PM
1,2,4-Trichlorobenzene	ND	54.9	µg/Kg-dry	1	12/19/2011 7:51:00 PM
1,2,4-Trimethylbenzene	ND	54.9	µg/Kg-dry	1	12/19/2011 7:51:00 PM
1,2-Dibromo-3-Chloropropane	ND	54.9	μg/Kg-dry	1	12/19/2011 7:51:00 PM
1,2-Dibromoethane	ND	54.9	µg/Kg-dry	1	12/19/2011 7:51:00 PM
1,2-Dichlorobenzene	NĎ	54.9	µg/Kg-dry	1	12/19/2011 7:51:00 PM
1,2-Dichloroethane	ND	54.9	µg/Kg-dry	1	12/19/2011 7:51:00 PM
1,2-Dichloropropane	ND	54.9	μg/Kg-dry	1	12/19/2011 7:51:00 PM
1,3,5-Trimethylbenzene	ND	54.9	µg/Kg-dry	1	12/19/2011 7:51:00 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 22-Dec-11

CLIENT:

EST

Client Sample ID: TP-2

Lab Order:

1112187

Collection Date: 12/16/2011 8:00:00 AM

Project: Lab ID:

Somerville Ice Rink 1112187-002

Date Received: 12/16/2011 Matrix: SOIL

Analyses	Result	Det. Limit	Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS -	8260B					Analyst: ZC
Prep Method:		I	Prep Da	te:		
1,3-Dichlorobenzene	ND	54.9		µg/Kg-dry	1	12/19/2011 7:51:00 PM
1,3-Dichloropropane	ND	54.9		µg/Kg-dry	1	12/19/2011 7:51:00 PM
1,4-Dichlorobenzene	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
2,2-Dichloropropane	ND	137		µg/Kg-dry	1	12/19/2011 7:51:00 PM
2-Butanone	ND	137		µg/Kg-dry	1	12/19/2011 7:51:00 PM
2-Chloroethyl Vinyl Ether	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
2-Chlorotoluene	ND	137		μg/Kg-dry	1	12/19/2011 7:51:00 PM
2-Hexanone	ND	137		μg/Kg-dry	1	12/19/2011 7:51:00 PM
2-Methoxy-2-Methylbutane (TAME)	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
4-Chlorotoluene	ND	137		μg/Kg-dry	1	12/19/2011 7:51:00 PM
4-Isopropyltoluene	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
4-Methyl-2-Pentanone	ND	54.9		µg/Kg-dry	1	12/19/2011 7:51:00 PM
Acetone	ND	137		μg/Kg-dry	1	12/19/2011 7:51:00 PM
Acrylonitrile	ND	54.9		µg/Kg-dry	1	12/19/2011 7:51:00 PM
Benzene	ND	54.9		µg/Kg-dry	1	12/19/2011 7:51:00 PM
Bromobenzene	ИD	54.9		µg/Kg-dry	1	12/19/2011 7:51:00 PM
Bromochloromethane	ND	137		µg/Kg-dry	1	12/19/2011 7:51:00 PM
Bromodichloromethane	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
Bromoform	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
Bromomethane	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
Carbon Disulfide	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
Carbon Tetrachloride	ND	54.9		µg/Kg-dry	1	12/19/2011 7:51:00 PM
Chlorobenzene	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
Chloroethane	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
Chloroform	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
Chloromethane	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
cis-1,2-Dichloroethene	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
cis-1,3-Dichloropropene	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
Dibromochloromethane	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
Dibromomethane	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
Dichlorodifluoromethane	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
Diethyl Ether	ND	54.9		µg/Kg-dry	1	12/19/2011 7:51:00 PM
Diisopropyl Ether	ND	54.9		µg/Kg-dry	1	12/19/2011 7:51:00 PM
Ethylbenzene	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
Ethyd & Dukut Ethyn						

Qualifiers:

Ethyl-t-Butyl Ether

Hexachlorobutadiene

Analyte detected in the associated Method Blank

ND

ND

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

BRL Below Reporting Limit

µg/Kg-dry

µg/Kg-dry

Holding times for preparation or analysis exceeded

1

1

ND Not Detected at the Reporting Limit

GeoLabs, Inc. 45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811

54.9

54.9

12/19/2011 7:51:00 PM

12/19/2011 7:51:00 PM

Reported Date: 22-Dec-11

CLIENT:

EST

Client Sample ID: TP-2

Lab Order:

1112187

Project:

Somerville Ice Rink

Value above quantitation range

Analyte detected below quantitation limits

Spike Recovery outside recovery limits

Collection Date: 12/16/2011 8:00:00 AM

Lab ID:

1112187-002

Date Received: 12/16/2011 Matrix: SOIL

				SOIL		
Analyses	Result	Det. Limit	Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS - 8	3260B					Analyst: ZC
Prep Method:		P	rep Dat	e:		
Isopropylbenzene	ND	54.9		µg/Kg-dry	1	12/19/2011 7:51:00 PM
Methyl Tert-Butyl Ether	ND	54.9		µg/Kg-dry	1	12/19/2011 7:51:00 PN
Methylene Chloride	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PN
Naphthalene	ND	137		µg/Kg-dry	1	12/19/2011 7:51:00 PN
n-Butylbenzene	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
n-Propylbenzene	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PN
sec-Butylbenzene	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PN
Styrene	ND	137		μg/Kg-dry	1	12/19/2011 7:51:00 PM
tert-Butylbenzene	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
Tetrachioroethene	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
Tetrahydrofuran	ND	137		μg/Kg-dry	1	12/19/2011 7:51:00 PM
Toluene	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
trans-1,2-Dichloroethene	ND	54.9		ug/Kg-dry	1	12/19/2011 7:51:00 PM
trans-1,3-Dichloropropene	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
Trichloroethene	ND	54.9		μg/Kg-dry	1	12/19/2011 7:51:00 PM
Trichlorofluoromethane	ND	137		µg/Kg-dry	1	12/19/2011 7:51:00 PN
Vinyl Chloride	ND	54.9		µg/Kg-dry	1	12/19/2011 7:51:00 PN
Xylenes, Total	ND	137		μg/Kg-dry	1	12/19/2011 7:51:00 PM
Surr: 1,2-Dichloroethane-d4	85.2	70-130		%REC	1	12/19/2011 7:51:00 PM
Surr: 4-Bromofluorobenzene	84.6	70-130		%REC	1	12/19/2011 7:51:00 PM
Surr: Dibromofluoromethane	82.6	70-130		%REC	1	12/19/2011 7:51:00 PM
Surr: Toluene-d8	101	70-130		%REC	1	12/19/2011 7:51:00 PM
SPECIFIC CONDUCTANCE - E120.1						Analyst: RP
Prep Method:		Р	rep Date	e:		•
Specific Conductance	172	1,00		µmhos/cm	1	12/20/2011
				•	·	
CYANIDE, REACTIVE - SW7.3.3.2						Analyst: RP
Prep Method:		P	rep Date	e:		
	ND	0.110		mg/Kg-dry	1	12/19/2011

GeoLabs, Inc. 45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Reported Date: 22-Dec-11

CLIENT:

EST

Lab Order:

1112187

Project: Lab ID:

Somerville Ice Rink

1112187-002

Client Sample ID: TP-2

Collection Date: 12/16/2011 8:00:00 AM

Date Received: 12/16/2011

Matrix: SOIL

Analyses

Result Det. Limit Qual Units DF

Date Analyzed

SULFIDE, REACTIVE - SW7.3.4.2

Analyst: RP

Prep Method:

Prep Date:

Reactive Sulfide

ND

0.275

mg/Kg-dry

1

12/19/2011

Qualifiers:

Analyte detected in the associated Method Blank

Е Value above quantitation range

Analyte detected below quantitation limits J

Spike Recovery outside recovery limits

BRL Below Reporting Limit

H Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

Reported Date: 22-Dec-11

CLIENT:

EST

Client Sample ID: TP-3

Lab Order:

1112187

Collection Date: 12/16/2011 8:00:00 AM

DF

Project: Lab ID:

Analyses

1112187-003

Somerville Ice Rink

Date Received: 12/16/2011 Matrix: SOIL

		,
TOTAL PETROL	EUM HYDROCARE	3ONS - 8100M

Analyst: Jsi

Date Analyzed

Prep Method:	(8100M)	Pre	p Date: 12/2	1/2011 1:49:13 PN	ı
Total Petroleum Hydrocarbons	59.9	54.9	mg/Kg-dry	1	12/19/2011
Surr: o-Terphenyl	76.7	40-140	%REC	1	12/19/2011

Det. Limit Qual Units

Result

POLYCHLORINATED BIPHENYLS - SW8082

Analyst: KG

Prep Method:	(SW3545A)	Prep	Date: 12/21/20	011 3:19:04	₽M
Aroclor 1016	ND	54.9	μg/Kg-dry	1	12/22/2011
Aroclor 1221	ND	110	μg/Kg-dry	1	12/22/2011
Aroclor 1232	ND	54.9	μg/Kg-dry	1	12/22/2011
Aroclor 1242	ND	54.9	μg/Kg-dry	1	12/22/2011
Aroclor 1248	ND	54.9	μg/Kg-dry	1	12/22/2011
Aroclor 1254	80.0	54.9	μg/Kg-dry	1	12/22/2011
Aroclor 1260	ND	54.9	μg/Kg-dry	1	12/22/2011
Surr: Decachlorobiphenyl Sig 1	78.6	30-150	%REC	1	12/22/2011
Surr: Decachlorobiphenyl Sig 2	72.7	30-150	%REC	1	12/22/2011
Surr: Tetrachloro-m-Xylene Sig 1	68.5	30-150	%REC	1	12/22/2011
Surr: Tetrachloro-m-Xylene Sig 2	67.9	30-150	%REC	1	12/22/2011

MERCURY - SW7471A

Analyst: EC

	Prep Method:	(SW7471A)	Prep		20/2011 2	2:49:16	PM
Mercury		ND	0.275	mg/Kg-dr	у	1	12/20/2011

RCRA METALS W/O HG - SW6010B

Analyst: QS

	Prep Method:	(SW3050B)	•	Date: 12/21/20	11 12:51:5	50 PM
Arsenic	VI.	ND	5.39	mg/Kg-dry	1	12/21/2011
Barium		47.1	5.39	mg/Kg-dry	1	12/21/2011
Cadmium		ND	1.08	mg/Kg-dry	1	12/21/2011
Chromium		15.4	5.39	mg/Kg-dry	1	12/21/2011
Lead		131	5.39	mg/Kg-dry	1	12/21/2011
Selenium		ND	5.39	mg/Kg-dry	1	12/21/2011
Silver		ND	10.8	mg/Kg-dry	1	12/21/2011

Qualifiers:

- Analyte detected in the associated Method Blank
- BRL Below Reporting Limit

Е Value above quantitation range

- H Holding times for preparation or analysis exceeded
- Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit

S Spike Recovery outside recovery limits

Reported Date: 22-Dec-11

CLIENT:

EST

Client Sample ID: TP-3

Lab Order:

1112187

Project:

Collection Date: 12/16/2011 8:00:00 AM

Lab ID:

Somerville Ice Rink 1112187-003

Date Received: 12/16/2011

Analyses Result Matrix: SOIL

TCLP LEAD - 6010B

DF Date Analyzed

Prep Method: (SW3010A) Prep Date:

Det. Limit Qual Units

12/22/2011 12:09:08 PM

Lead

0.560

0.0500

mg/L

5 12/22/2011

SEMIVOLATILE ORGANICS - SW8270C

Analyst: ZYZ

Analyst: QS

Prep Method:	(SW3545A)	Prep	Date:	12/21/20	011 2:57:56	6 PM
1,1'-Biphenyl	ND	11.0	μg/Kg	-dry	1	12/21/2011 4:19:00 PM
1,2,4-Trichlorobenzene	ND	110	μg/Kg	-dry	1	12/21/2011 4:19:00 PM
1,2-Dichlorobenzene	ND	110	μg/Kg	-dry	1	12/21/2011 4:19:00 PM
1,2-Dinitrobenzene	ND	110	μg/Kg	-dry	1	12/21/2011 4:19:00 PM
1,3-Dichlorobenzene	ND	110	µg/Kg	-dry	1	12/21/2011 4:19:00 PM
1,3-Dinitrobenzene	ND	110	μg/Kg	-dry	1	12/21/2011 4:19:00 PM
1,4-Dichlorobenzene	ND	. 110	μg/Kg	-dry	1	12/21/2011 4:19:00 PM
1,4-Dinitrobenzene	ND	110	μg/Kg	-dry	1	12/21/2011 4:19:00 PM
2,3,4,6-Tetrachlorophenol	ND	110	μg/Kg		1	12/21/2011 4:19:00 PM
2,4,5-Trichlorophenol	ND	110	µg/Kg	-	1	12/21/2011 4:19:00 PM
2,4,6-Trichlorophenol	ND	110	µg/Kg	-	1	12/21/2011 4:19:00 PM
2,4-Dichlorophenol	ND	110	μg/Kg	-dry	1	12/21/2011 4:19:00 PM
2,4-Dimethylphenol	ND	110	μg/Kg	-	1	12/21/2011 4:19:00 PM
2,4-Dinitrophenol	ND	549	µg/Kg		1	12/21/2011 4:19:00 PM
2,4-Dinitrotoluene	ND	110	µg/Kg	-	" 1	12/21/2011 4:19:00 PM
2,6-Dinitrotoluene	ND	110	μg/Kg	-	1	12/21/2011 4:19:00 PM
2-Chloronaphthalene	ND	110	μg/Kg	•	1	12/21/2011 4:19:00 PM
2-Chlorophenol	ND	110	μg/Kg	-dry	1	12/21/2011 4:19:00 PM
2-Methylnaphthalene	335	110	μg/Kg	-drv	1	12/21/2011 4:19:00 PM
2-Methylphenol	ND	110	μg/Kg	-dry	1	12/21/2011 4:19:00 PM
2-Nitroaniline	ND	110	μg/Kg		1	12/21/2011 4:19:00 PM
2-Nitrophenol	ND	110	μg/Kg	-	1	12/21/2011 4:19:00 PM
3,3´-Dichlorobenzidine	ND	110	μg/Kg		1	12/21/2011 4:19:00 PM
3-Methylphenol/4-Methylphenol	ND	110	μg/Kg	•	1	12/21/2011 4:19:00 PM
3-Nitroaniline	ND	110	μg/Kg	-	1	12/21/2011 4:19:00 PM
4,6-Dinitro-2-Methylphenol	ND	549	µg/Kg	•	1	12/21/2011 4:19:00 PM
4-Bromophenyl Phenyl Ether	ND	110	μg/Kg	-	1	12/21/2011 4:19:00 PM
4-Chloro-3-Methylphenol	ND	549	µg/Kg		1	12/21/2011 4:19:00 PM
4-Chloroaniline	ND	110	µg/Kg	-	1	12/21/2011 4:19:00 PM
4-Chlorophenyl Phenyl Ether	ND	110	µg/Kg		1	12/21/2011 4:19:00 PM

Qualifiers:

- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits J
- Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

ANALYTICAL REPORT Reported Date: 22-Dec-11

CLIENT:

EST

Client Sample ID: TP-3

Lab Order:

1112187

Collection Date: 12/16/2011 8:00:00 AM

Project:

Somerville Ice Rink

Date Received: 12/16/2011

Lab ID:

1112187-003

Matrix: SOIL

Analyses	Result	Det. Limit	Qual	Units	DF	Date Analyzed

SEMIVOLATILE ORGANICS - SW8270C

Analyst: ZYZ

4-Nitrophenol ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM 4-Nitrophenol ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Acenaphthene 675 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Acenaphthylene 590 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Acenaphthylene ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Acetophenone ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Acetophenone ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Aniline ND 549 μg/Kg-dry 1 12/21/2011 4:19:00 PM Aniline ND 549 μg/Kg-dry 1 12/21/2011 4:19:00 PM Acobenzene ND 549 μg/Kg-dry 1 12/21/2011 4:19:00 PM Acobenzene ND 549 μg/Kg-dry 1 12/21/2011 4:19:00 PM Benz(a)Anthracene 3530 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Benz(a)Pyrene 3330 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Benz(a)Pyrene 3330 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Benz(a)Filoranthene 2520 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Benz(a)Filoranthene 2220 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Benz(a)Filoranthene 2220 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Benz(a)Filoranthene ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chlorosthy)Ether ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chlorosthane ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chl	Prep Method:	(SW3545A)	Pre	Date:	12/21/20	11 2:57:56	PM
4-Nitrophenol ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Acenaphthene 675 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Acenaphthylene 590 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Acetophenone ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Anline ND 549 μg/Kg-dry 1 12/21/2011 4:19:00 PM Anthracene 2810 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Azobenzene ND 549 μg/Kg-dry 1 12/21/2011 4:19:00 PM Benza(a)Anthracene 3530 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Benza(b)Fluoranthene 2520 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Benza(k)Fluoranthene 2520 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Benza(k)Fluoranthene 2360 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Benza(k)Fluoranthene 2360 1	4-Nitroaniline	ND	110	μg/Kg-	-dry	1	12/21/2011 4:19:00 PM
Acenaphthylene 590 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Acetophenone ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Aniline ND 549 µg/Kg-dry 1 12/21/2011 4:19:00 PM Anthracene 2910 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Azobenzene ND 549 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benza(a)Anthracene 3530 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benza(a)Pyrene 3330 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benza(b)Fluoranthene 2520 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benza(s)Fluoranthene 2240 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benza(s)Fluoranthene 2240 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benza(s)Fluoranthene 2240 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benza(s)Fluoranthene 130	4-Nitrophenol	ND	110			1	12/21/2011 4:19:00 PM
Acetophenone ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Aniline ND 549 µg/Kg-dry 1 12/21/2011 4:19:00 PM Anthracene 2910 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Anthracene ND 549 µg/Kg-dry 1 12/21/2011 4:19:00 PM Anthracene ND 549 µg/Kg-dry 1 12/21/2011 4:19:00 PM Enz(a)Anthracene 3530 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Enz(a)Anthracene 3530 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Enz(a)Anthracene 3530 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Enz(a)Enzo(a)Pyrene 3310 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Enz(a)Enzo(b)Fluoranthene 2520 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Enz(a)Enzo(b)Fluoranthene 240 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Enz(a)Enzo(b)Fluoranthene 240 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Enz(a)Enzo(b)Fluoranthene ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Els(2-Chloroethoxy)Methane ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroethoxy)Methane ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroethoxy)Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroethy)Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroethy)Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Ehylhexy)Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Ehylhexy)Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Carbazole 652 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Dibenz(a)h)Anthracene 103 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Dibenz(a)h)Anthracene ND 110 µg/Kg-dry 1 12/2	Acenaphthene	675	110	μg/Kg-	-dry	1	
Acetophenone Aniline Aniline ND A	Acenaphthylene	590	110	µg/Kg-	-dry	1	12/21/2011 4:19:00 PM
Anthracene 2910 110 yg/Kg-dry 1 12/21/2011 4:19:00 PM Azobenzene ND 549 yg/Kg-dry 1 12/21/2011 4:19:00 PM Benz(a)Anthracene 3530 11.0 yg/Kg-dry 1 12/21/2011 4:19:00 PM Benz(a)Pyrene 3310 11.0 yg/Kg-dry 1 12/21/2011 4:19:00 PM Benz(a)Pyrene 2520 1110 yg/Kg-dry 1 12/21/2011 4:19:00 PM Benz(a)Filuoranthene 2520 1110 yg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(b)Filuoranthene 2520 1110 yg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(k)Filuoranthene 2520 1110 yg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(k)Filuoranthene 2240 1110 yg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(k)Filuoranthene 2400 110 yg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(k)Filuoranthene ND 110 yg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroethoxy)Methane ND 110 yg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroethoxy)Ether ND 110 yg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroethoxy)Ether ND 110 yg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Ethylhexy)Pythhalate ND 110 yg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Ethylhexy)Pythhalate ND 110 yg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Ethylhexy)Pythhalate ND 110 yg/Kg-dry 1 12/21/2011 4:19:00 PM Carbazole 652 1110 yg/Kg-dry 1 12/21/2011 4:19:00 PM Dibenzolarna 620 110 yg/Kg-dry 1 12/21/2011 4:19:00 PM Dibenzofuran 620 120 yg/Kg-dry 1 12/21/2011 4:19:00 PM Dibenzofuran 620 120 yg/Kg-dry 1 12/21/2011 4:19:00 PM Dibenzofuran 620 120 yg/Kg-dry 1 12/21/2011 4:19:00 PM Dibenzofuran 620 yg/Kg-dry 1 12/21/2011 4:19:00 PM Dibenzofuran 620 yg/Kg-dry 1 12/21/201	Acetophenone	ND	110			1	12/21/2011 4:19:00 PM
Anthracene 2910 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Azobenzene ND 549 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(a)Rhthracene 3530 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(a)Pyrene 3370 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(b)Fluoranthene 2520 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(s)F, i)Perylene 1340 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(s)Fluoranthene 2240 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzyl Alcohol ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroethoxy)Methane ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroethoxy)Pithen ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Ethylhexy)Pithalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Buyl Kg-dry </td <td>Aniline</td> <td>ND</td> <td>549</td> <td>μg/Kg-</td> <td>-dry</td> <td>1</td> <td>12/21/2011 4:19:00 PM</td>	Aniline	ND	549	μg/Kg-	-dry	1	12/21/2011 4:19:00 PM
Benz(a)Anthracene 3530	Anthracene	2910	110			1	
Benz(a)Anthracene 3530 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(a)Pyrene 3310 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(b)Fluoranthene 2520 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(b)Fluoranthene 2520 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(b)Fluoranthene 2240 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzyl Alcohol ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroethoxy)Methane ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM	Azobenzene	ND	549	μg/Kg-	-dry	1	12/21/2011 4:19:00 PM
Benzo(a)Pyrene 3310 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(b)Fluoranthene 2520 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(g), hi/Perylene 1340 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(k)Fluoranthene 2240 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzyl Alcohol ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroethoxy)Methane ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroispropyl)Ether ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroispropyl)Ether ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Ethylbexyl)Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Ethylbexyl)Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Butyl Benzyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM	Benz(a)Anthracene	3530	11.0			1	12/21/2011 4:19:00 PM
Benzo(b)Fluoranthene 2520 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(g,h,j)Perylene 1340 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(k)Fluoranthene 2240 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(k)Fluoranthene ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroethoxy)Methane ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroethy)Ether ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroisopropyl)Ether ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Ethylhexyl)Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bistyl Benzyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Chrysene 3160 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Chrysene 3160 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM	Benzo(a)Pyrene	3310	11.0	μg/Kg-	dry	1	
Benzo(g,h,i)Perylene 1340 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzo(k)Fluoranthene 2240 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzyl Alcohol ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroethoxy)Methane ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroethyl)Ether ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chlorostopropyl)Ether ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Ethylhexyl)Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Ethylhexyl)Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Ethylhexyl)Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Chrysene 3160 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Chrysene 3160 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM <t< td=""><td>Benzo(b)Fluoranthene</td><td>2520</td><td>110</td><td></td><td>-</td><td>1</td><td></td></t<>	Benzo(b)Fluoranthene	2520	110		-	1	
Benzo(k)Fluoranthene 2240 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Benzyl Alcohol ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroethoxy)Methane ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroethyl)Ether ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroisopropy)Ether ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Ethylhexyl)Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Butyl Benzyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Butyl Benzyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Carbazole 652 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Chrysene 3160 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Dibenzofuran 620 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Diethyl Phthalat	Benzo(g,h,i)Perylene	1340	110	-	-	1	12/21/2011 4:19:00 PM
Benzyl Alcohol ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroethoxy)Methane ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroethyl)Ether ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroisopropyl)Ether ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Ethylhexyl)Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Carbazole 652 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Chrysene 3160 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Dibenzofuran 620 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Die	Benzo(k)Fluoranthene	2240	110	_		1	
Bis(2-Chloroethyl)Ether ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Chloroisopropyl)Ether ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Bis(2-Ethylhexyl)Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Butyl Benzyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Carbazole 652 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Chrysene 3160 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Dibenz(a,h)Anthracene 103 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Dibenzofuran 620 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Diethyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Di-n-Butyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Di-n-Octyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Fluoranthene	Benzyl Alcohol	ND	110	μg/Kg-	dry	1	
Bis(2-Chloroisopropyl)Ether ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM	Bis(2-Chloroethoxy)Methane	ND	110	μg/Kg-	dry	1	12/21/2011 4:19:00 PM
Bis(2-Ethylhexyl)Phthalate	Bis(2-Chloroethyl)Ether	ND	110	μg/Kg-	dry	1	12/21/2011 4:19:00 PM
Bis(2-Ethylhexyl)Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Butyl Benzyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Carbazole 652 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Chrysene 3160 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Dibenz(a,h)Anthracene 103 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Dibenzofuran 620 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Diethyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Di-n-Butyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Di-n-Octyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Fluoranthene 7770 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Fluorene 1090 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorobutadiene ND	Bis(2-Chloroisopropyl)Ether	ND	110	μg/Kg-	dry	1	12/21/2011 4:19:00 PM
Carbazole 652 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Chrysene 3160 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Dibenz(a,h)Anthracene 103 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Dibenzofuran 620 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Diethyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Dimethyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Di-n-Butyl Phthalate ND 549 µg/Kg-dry 1 12/21/2011 4:19:00 PM Di-n-Octyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Fluoranthene 7770 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Fluoranthene 1090 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorobenzene ND 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorocytopentadiene ND	Bis(2-Ethylhexyl)Phthalate	ND	110	μg/Kg-	dry	1	
Carbazole 652 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Chrysene 3160 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Dibenz(a,h)Anthracene 103 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Dibenzofuran 620 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Diethyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Dimethyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Di-n-Butyl Phthalate ND 549 µg/Kg-dry 1 12/21/2011 4:19:00 PM Di-n-Octyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Fluorenthene 7770 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Fluorene 1090 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorobenzene ND 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorocyclopentadiene ND	Butyl Benzyl Phthalate	ND	110	μg/ K g-	dry	1	12/21/2011 4:19:00 PM
Chrysene 3160 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Dibenz(a,h)Anthracene 103 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Dibenzofuran 620 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Diethyl Phthalate ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Dimethyl Phthalate ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Di-n-Butyl Phthalate ND 549 μg/Kg-dry 1 12/21/2011 4:19:00 PM Di-n-Octyl Phthalate ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Fluoranthene 7770 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Fluorene 1090 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorobenzene ND 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorocyclopentadiene ND 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorochane ND	Carbazole	652	110	μg/Kg-	dry	1	
Dibenzofuran 620 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Diethyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Dimethyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Di-n-Butyl Phthalate ND 549 µg/Kg-dry 1 12/21/2011 4:19:00 PM Di-n-Octyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Fluoranthene 7770 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Fluorene 1090 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorobenzene ND 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorocyclopentadiene ND 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorocyclopentadiene ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorocyclopentadiene ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorocyclopentadien	Chrysene	3160	110			1	12/21/2011 4:19:00 PM
Diethyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Dimethyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Di-n-Butyl Phthalate ND 549 µg/Kg-dry 1 12/21/2011 4:19:00 PM Di-n-Octyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Fluoranthene 7770 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Fluorene 1090 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorobenzene ND 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorobutadiene ND 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachloroethane ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Indeno(1,2,3-cd)Pyrene 1450 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Isophorone ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM	Dibenz(a,h)Anthracene	103	11.0	μg/Kg-	dry	1	12/21/2011 4:19:00 PM
Dimethyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Di-n-Butyl Phthalate ND 549 µg/Kg-dry 1 12/21/2011 4:19:00 PM Di-n-Octyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Fluoranthene 7770 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Fluorene 1090 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorobenzene ND 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorobutadiene ND 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorocyclopentadiene ND 549 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachloroethane ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Indeno(1,2,3-cd)Pyrene 1450 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Isophorone ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM	Dibenzofuran	620	110	μg/Kg-	dry	1	12/21/2011 4:19:00 PM
Dimethyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Di-n-Butyl Phthalate ND 549 µg/Kg-dry 1 12/21/2011 4:19:00 PM Di-n-Octyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Fluoranthene 7770 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Fluorene 1090 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorobenzene ND 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorobutadiene ND 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachloroethane ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Indeno(1,2,3-cd)Pyrene 1450 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Isophorone ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM	Diethyl Phthalate	ND	110	μg/Kg-	dry	1	12/21/2011 4:19:00 PM
Di-n-Octyl Phthalate ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Fluoranthene 7770 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Fluorene 1090 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorobenzene ND 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorobutadiene ND 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorocyclopentadiene ND 549 µg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachloroethane ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM Indeno(1,2,3-cd)Pyrene 1450 11.0 µg/Kg-dry 1 12/21/2011 4:19:00 PM Isophorone ND 110 µg/Kg-dry 1 12/21/2011 4:19:00 PM	Dimethyl Phthalate	ND	110			1	
Di-n-Octyl Phthalate ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Fluoranthene 7770 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Fluorene 1090 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorobenzene ND 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorobutadiene ND 549 μg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachloroethane ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Indeno(1,2,3-cd)Pyrene 1450 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Isophorone ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM	Di-n-Butyl Phthalate	ND	549	μg/Kg-	dry	1	12/21/2011 4:19:00 PM
Fluoranthene 7770 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Fluorene 1090 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorobenzene ND 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorobutadiene ND 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorocyclopentadiene ND 549 μg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachloroethane ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Indeno(1,2,3-cd)Pyrene 1450 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Isophorone ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM	Di-n-Octyl Phthalate	ND	110			1	12/21/2011 4:19:00 PM
Hexachlorobenzene ND 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorobutadiene ND 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorocyclopentadiene ND 549 μg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachloroethane ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Indeno(1,2,3-cd)Pyrene 1450 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Isophorone ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM	Fluoranthene	7770	110	μg/Kg-	dry	1	
Hexachlorobenzene ND 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorobutadiene ND 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachlorocyclopentadiene ND 549 μg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachloroethane ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Indeno(1,2,3-cd)Pyrene 1450 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Isophorone ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM	Fluorene	1090	110	μg/Kg-	dry	1	12/21/2011 4:19:00 PM
Hexachlorocyclopentadiene ND 549 μg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachloroethane ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Indeno(1,2,3-cd)Pyrene 1450 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Isophorone ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM	Hexachlorobenzene	ND	11.0			1	
Hexachlorocyclopentadiene ND 549 μg/Kg-dry 1 12/21/2011 4:19:00 PM Hexachloroethane ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Indeno(1,2,3-cd)Pyrene 1450 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Isophorone ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM	Hexachlorobutadiene	ND	11.0		•	1	
Hexachloroethane ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM Indeno(1,2,3-cd)Pyrene 1450 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Isophorone ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM	Hexachlorocyclopentadiene	ND	549		•	1	
Indeno(1,2,3-cd)Pyrene 1450 11.0 μg/Kg-dry 1 12/21/2011 4:19:00 PM Isophorone ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM	Hexachloroethane	ND	110	-	-	1	
Isophorone ND 110 μg/Kg-dry 1 12/21/2011 4:19:00 PM	Indeno(1,2,3-cd)Pyrene	1450	11.0		-	1	
	Isophorone	ND	110			1	
	Naphthalene	512	110			1	

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
 - Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 22-Dec-11

CLIENT: Lab Order: **EST**

1112187

Somerville Ice Rink

Project: Lab ID:

1112187-003

Client Sample ID: TP-3

Collection Date: 12/16/2011 8:00:00 AM

Date Received: 12/16/2011

Matrix: SOIL

Analyses

Result Det. Limit Qual Units

DF D

Date Analyzed

Analyst: ZYZ

SEMIVOLATILE ORGANICS - SW8270C

Prep Method	d: (SW3545A)	P	rep D	ate: 12/21	/2011 2:57:56 PM	·
Nitrobenzene	ND	110		μg/Kg-dry	1	12/21/2011 4:19:00 PM
N-Nitrosodimethylamine	ND	549		µg/Kg-dry	1	12/21/2011 4:19:00 PM
N-Nitrosodi-n-Propylamine	ND	110		µg/Kg-dry	1	12/21/2011 4:19:00 PM
N-Nitrosodiphenylamine	ND	549		μg/Kg-dry	1	12/21/2011 4:19:00 PM
Pentachlorophenol	ND	110		μg/Kg-dry	1	12/21/2011 4:19:00 PM
Phenanthrene	8010	110		µg/Kg-dry	1	12/21/2011 4:19:00 PM
Phenol	ND	110		µg/Kg-dry	1	12/21/2011 4:19:00 PM
Pyrene	6880	110		µg/Kg-dry	1	12/21/2011 4:19:00 PM
Pyridine	ND	549		μg/Kg-dry	1	12/21/2011 4:19:00 PM
Surr: 2,4,6-Tribromophenol	75.3	30-130		%REC	1	12/21/2011 4:19:00 PM
Surr: 2-Fluorobiphenyl	52.0	30-130		%REC	1	12/21/2011 4:19:00 PM
Surr: 2-Fluorophenol	23.2	30-130	S	%REC	1	12/21/2011 4:19:00 PM
Surr: Nitrobenzene-d5	40.0	30-130		%REC	1	12/21/2011 4:19:00 PM
Surr: Phenol-d6	48.3	30-130		%REC		12/21/2011 4:19:00 PM
Surr: Terphenyl-d14	53.8	30-130		%REC		12/21/2011 4:19:00 PM

VOLATILE ORGANIC COMPOUNDS - 8260B

Analyst: ZC

2/19/2011 8:22:00 PM
2/19/2011 8:22:00 PM
2/19/2011 8:22:00 PM
/19/2011 8:22:00 PM
1/19/2011 8:22:00 PM
1/19/2011 8:22:00 PM
/19/2011 8:22:00 PM
/19/2011 8:22:00 PM
/19/2011 8:22:00 PM
/19/2011 8:22:00 PM
//19/2011 8:22:00 PM
/19/2011 8:22:00 PM
/19/2011 8:22:00 PM
/19/2011 8:22:00 PM
/19/2011 8:22:00 PM
/19/2011 8:22:00 PM
2 2 2 2 2 2

Qualifiers:

B Analyte detected in the associated Method Blank

Analyte detected below quantitation limits

- E Value above quantitation range
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 22-Dec-11

CLIENT:

EST

Lab Order: 1112187

Project:

Somerville Ice Rink

Lab ID:

1112187-003

Client Sample ID: TP-3

Collection Date: 12/16/2011 8:00:00 AM

Date Received: 12/16/2011

Matrix: SOIL

Analyses	Result	Det. Limit	Qual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS -	8260B				Analyst: ZC
Prep Method:		F	rep Date:		
1,3-Dichlorobenzene	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
1,3-Dichloropropane	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
1,4-Dichlorobenzene	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
2,2-Dichloropropane	ND	137	μg/Kg-dry	1	12/19/2011 8:22:00 PM
2-Butanone	ND	137	μg/Kg-dry	1	12/19/2011 8:22:00 PM
2-Chloroethyl Vinyl Ether	ND	54.9	µg/Kg-dry	1	12/19/2011 8:22:00 PM
2-Chlorotoluene	ND	137	μg/Kg-dry	1	12/19/2011 8:22:00 PM
2-Hexanone	ND	137	μg/Kg-dry	1	12/19/2011 8:22:00 PM
2-Methoxy-2-Methylbutane (TAME)	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
4-Chlorotoluene	ND	137	μg/Kg-dry	1	12/19/2011 8:22:00 PM
4-Isopropyltoluene	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
4-Methyl-2-Pentanone	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
Acetone	ND	137	μg/Kg-dry	1	12/19/2011 8:22:00 PM
Acrylonitrile	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
Benzene	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
Bromobenzene	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
Bromochloromethane	ND	137	µg/Kg-dry	1	12/19/2011 8:22:00 PM
Bromodichloromethane	ND	54.9	µg/Kg-dry	1	12/19/2011 8:22:00 PM
Bromoform	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
Bromomethane	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
Carbon Disulfide	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
Carbon Tetrachloride	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
Chlorobenzene	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
Chloroethane	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
Chloroform	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
Chloromethane	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
cis-1,2-Dichloroethene	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
cis-1,3-Dichloropropene	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
Dibromochloromethane	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
Dibromomethane	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
Dichlorodifluoromethane	ND	54.9	µg/Kg-dry	1	12/19/2011 8:22:00 PM
Diethyl Ether	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
Diisopropyl Ether	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
Ethylbenzene	ND	54.9	µg/Kg-dry	1	12/19/2011 8:22:00 PM
Ethyl-t-Butyl Ether	ND	54.9	μg/Kg-dry	1	12/19/2011 8:22:00 PM
Hexachlorobutadiene	ND	54.9	µg/Kg-dry	1	12/19/2011 8:22:00 PM

Qualifiers:

- Analyte detected in the associated Method Blank В
- E Value above quantitation range
 - Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Reported Date: 22-Dec-11

CLIENT:

EST

Lab Order:

1112187

Project:

Somerville Ice Rink

Lab ID: 1112187-003

Client Sample ID: TP-3

Collection Date: 12/16/2011 8:00:00 AM

Date Received: 12/16/2011

Matriv SOIL

Lab ID: 1112187-003			rix: SOIL	'IL			
Analyses	Result	Det. Limit	Qual	Units	DF	Date Analyzed	
VOLATILE ORGANIC COMPOUNDS - 82	60B					Analyst: ZC	
Prep Method:		ı	Prep Da	te:			
Isopropylbenzene	ND	54.9		µg/Kg-dry	1	12/19/2011 8:22:00 PA	
Methyl Tert-Butyl Ether	ND	54.9		μg/Kg-dry	1	12/19/2011 8:22:00 PM	
Methylene Chloride	ND	54.9		μg/Kg-dry	1	12/19/2011 8:22:00 PM	
Naphthalene	ND	137		μg/Kg-dry	1	12/19/2011 8:22:00 PM	
n-Butylbenzene	ND	54.9		μg/Kg-dry	1	12/19/2011 8:22:00 PN	
n-Propylbenzene	ND	54.9		μg/Kg-dry	1	12/19/2011 8:22:00 PN	
sec-Butylbenzene	ND	54.9		μg/Kg-dry	1	12/19/2011 8:22:00 PN	
Styrene	ND	137		μg/Kg-dry	1	12/19/2011 8:22:00 PN	
tert-Butylbenzene	ND	54.9		μg/Kg-dry	1	12/19/2011 8:22:00 PN	
Tetrachloroethene	ND	54.9		μg/Kg-dry	1	12/19/2011 8:22:00 PM	
Tetrahydrofuran	ND	137		μg/Kg-dry	1	12/19/2011 8:22:00 PM	
Toluene	ND	54.9		μg/Kg-dry	1	12/19/2011 8:22:00 PM	
trans-1,2-Dichloroethene	ND	54.9		μg/Kg-dry	1	12/19/2011 8:22:00 PM	
trans-1,3-Dichloropropene	ND	54.9		μg/Kg-dry	1	12/19/2011 8:22:00 PM	
Trichloroethene	ND	54.9		μg/Kg-dry	1	12/19/2011 8:22:00 PN	
Trichlorofluoromethane	ND	137		μg/Kg-dry	1	12/19/2011 8:22:00 PN	
Vinyl Chloride	ND	54.9		μg/Kg-dry	1	12/19/2011 8:22:00 PM	
Xylenes, Total	ND	137		μg/Kg-dry	1	12/19/2011 8:22:00 PM	
Surr: 1,2-Dichloroethane-d4	84.3	70-130		%REC	1	12/19/2011 8:22:00 PM	
Surr: 4-Bromofluorobenzene	83.3	70-130		%REC	1	12/19/2011 8:22:00 PM	
Surr: Dibromofluoromethane	80.8	70-130		%REC	1	12/19/2011 8:22:00 PN	
Surr: Toluene-d8	101	70-130		%REC	1	12/19/2011 8:22:00 PN	
SPECIFIC CONDUCTANCE - E120.1						Analyst: RP	
Prep Method:		F	rep Da	te:			
Specific Conductance	300	1.00	···· other channels are seen	µmhos/cm	1	12/20/2011	
CYANIDE, REACTIVE - SW7.3.3.2						Analyst: RP	
Prep Method:		F	Prep Da	te:			

Qualifiers:

Reactive Cyanide

Analyte detected in the associated Method Blank

ND

- Ε Value above quantitation range
- Analyte detected below quantitation limits
- S Spike Recovery outside recovery limits

BRL Below Reporting Limit

mg/Kg-dry

Н Holding times for preparation or analysis exceeded

12/19/2011

ND Not Detected at the Reporting Limit

GeoLabs, Inc. 45 Johnson Lane ~ Braintree MA 02184 ~ 781 848 7844 ~ 781 848 7811

0.110

Reported Date: 22-Dec-11

CLIENT:

EST

Client Sample ID: TP-3

Lab Order:

1112187

Collection Date: 12/16/2011 8:00:00 AM

1

Project: Lab ID:

Somerville Ice Rink 1112187-003

Date Received: 12/16/2011 Matrix: SOIL

Analyses

Result Det. Limit Qual Units

0.275

DF Date Analyzed

SULFIDE, REACTIVE - SW7.3.4.2

Analyst: RP

Prep Method:

Prep Date:

Reactive Sulfide

ND

mg/Kg-dry

12/19/2011

Qualifiers:

В Analyte detected in the associated Method Blank

Value above quantitation range

BRL Below Reporting Limit

Е Analyte detected below quantitation limits H Holding times for preparation or analysis exceeded

S Spike Recovery outside recovery limits ND Not Detected at the Reporting Limit

C-months.				Lab Use Only	~4W 5.E	ſ (1	Other			
E. Marketon		300000000000000000000000000000000000000		Lab	3HUTAR39M3T	35 -	9	0 = Other	N. Parket		1000 VX
PAGE	(3)	Ž		Lesteta .	ANDS AND SA	XX		B = Bag P = Plastic V = Voa	1		3:45, MI 1010 0000
uctions	ence Protoco			Hedue	か が必要	X	<u> </u>	Containers: A = Amber G = Glass S = Summa	Date / Time		
3/ミフ Special Instructions	choice (s) table Confide			Analy	TH.	XX	X			1	12/16/11
1/13/27 Special I	Requirements: circle choice (s) CT RCP (Reasonable Confidence Protocols) State / Fed Program - Criteria	Project Second			57905	XX	\X	7 = Other	1	THY.	40)
	Requirem CT I Stat	1	-	·)	5001	XX	X	5 = NaOH 6 = MEOH	Will	MAS	CT (BH 0148)
	MCP Methods DEP Other	NOT SHOT	Preserative.	2000	LE NUMBER	100	883	= H2S04 = Na2S203	7.	1	1 Taka
	MCP I DEP Other	20.94 20.85	0.		Geolabs SAMPLE NUMBER	2187.001	9.	atives 3	Received by:	A.	Terms: Payment due within/860 defis, unless other arrandements are made. Past due balances subject to interest and collection code.
Sample Handling: circle choice Filtration Done Not Needed Lab to do Preservation Lab to do Y/N	H. ()				9 x < a			Preserva 1 = Hd 2 = HN03	Recei		of toolblact to
ndling: circ Done Not Ne Lab to Lab to	GW-1 S-1 QC				OOSE	λŽ		Received on Ice			St due balance
Sample Har Filtration Preservation	ze (s) ail	Phone: 추가 Fax: email: 녹소스스		NER	X-B-V Z			Receive) //
	ircle choice email PDF	Phone: Fax: email: 3		CONTAINER	⊬>c H	y			ime	10000	rrandements
9 88 88	Data Delivery: círcle choice (s) ax xmat: cemail cel		ACOUNTY THE PROPERTY SALES OF THE PROPERTY S		۵			A = Air 0T = Other	Date / Time	3	unless other g
CUSTODY informental Laboratorie Braintree, MA 02184 f 781.848.7811	Data I Fax Format: Excel		200000000000000000000000000000000000000		SAMPLE LOCATION / ID	encrease (S = Soil 0 = 0il			With 1880 days
invironmenta Nyironmenta Braintree f 781.						40	té	ıg Water			: Payment due
CHAIN OF CUSTODY FECORD GeoLabs, Inc. Environmental Laboratories 45 Johnson Lane, Braintree, MA 02184 p 781.848.7844 • f 781.848.7811 www.geolabs.com	circle one 3-day 5-/7-days				♡∢∑で⊤™∪ ∞≻			DW = Drinking Water SL = Sludge		4)	
,	Turnaround: circle one 3-day 5-f7-day		***************************************	COLLECTION	F En	Ö		es: Water Water	by:		of GR.09/22/1
Geol.abs. Inc.	Tı 1-day 2-day	Client: 2 Address: Contact: 3		10	OAFB	N. C.		Matrix Codes: GW = Ground Water WW = Waste Water	Relinquished by:	5	2010730, J&P.C. of CB, 09/22/10